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FOREWORD

Mathematics HL (Option): Statistics and Probability has been written as a companion book to the
Mathematics HL (Core) textbook. Together, they aim to provide students and teachers with
appropriate coverage of the two-year Mathematics HL Course, to be first examined in 2014.

This book covers all sub-topics set out in Mathematics HL Option Topic 7 and Further Mathematics
HL Topic 3, Statistics and Probability.

The aim of this topic is to introduce students to the basic concepts and techniques of statistics and
probability and their applications.

Detailed explanations and key facts are highlighted throughout the text. Each sub-topic contains
numerous Worked Examples, highlighting each step necessary to reach the answer for that example.

Theory of Knowledge is a core requirement in the International Baccalaureate Diploma Programme,
whereby students are encouraged to think critically and challenge the assumptions of knowledge.
Discussion topics for Theory of Knowledge have been included on pages 157 to 159. These aim to
help students discover and express their views on knowledge issues.

The accompanying student CD includes a PDF of the full text and access to specially designed
graphing software.

Graphics calculator instructions for Casio fx-9860G Plus, Casio fx-CG20, TI-84 Plus and TI- spire
are available from icons located throughout the book.

Fully worked solutions are provided at the back of the text, however students are encouraged to
attempt each question before referring to the solution.

It is not our intention to define the course. Teachers are encouraged to use other resources. We have
developed this book independently of the International Baccalaureate Organization (IBO) in
consultation with experienced teachers of IB Mathematics. The Text is not endorsed by the IBO.

In this changing world of mathematics education, we believe that the contextual approach shown in
this book, with associated use of technology, will enhance the students understanding, knowledge
and appreciation of mathematics and its universal applications.

n

We welcome your feedback.

Email:

Web:

info@haesemathematics.com.au

www.haesemathematics.com.au

CTQ PJB

RCH PMH

ACKNOWLEDGEMENTS

The authors and publishers would like to thank all those teachers who offered advice and
encouragement on this book.
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USING THE INTERACTIVE STUDENT CD

The interactive CD is ideal for independent study.

Students can revisit concepts taught in class and undertake their own revision
and practice. The CD also has the text of the book, allowing students to leave
the textbook at school and keep the CD at home.

By clicking on the relevant icon, a range of interactive features can be
accessed:

�

�

Graphics calculator instructions for the ,
, and the

Interactive links to graphing software

Casio fx-9860G Plus Casio fx-
CG20 TI-84 Plus TI- spiren

INTERACTIVE

LINK

GRAPHICS
CALCULATOR

INSTRUCTIONS
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6

SYMBOLS AND NOTATION USED IN THIS BOOK

¼ is approximately equal to

> is greater than

> is greater than or equal to

< is less than

6 is less than or equal to

f......g the set of all elements ......

2 is an element of

=2 is not an element of

N the set of all natural numbers f0, 1, 2, 3, ....g
Z the set of integers f0, §1, §2, §3, ....g
Q the set of rational numbers

R the set of real numbers

Z + the set of positive integers f1, 2, 3, ....g
µ is a subset of

½ is a proper subset of

) implies that

)Á does not imply that

f : A ! B f is a function under which each element of set A has an image in set B

f : x 7! y f is a function under which x is mapped to y

f(x) the image of x under the function f

f ± g or f(g(x)) the composite function of f and g

jxj the modulus or absolute value of x

[ a , b ] the closed interval a 6 x 6 b

] a, b [ the open interval a < x < b

un the nth term of a sequence or series with first term u1

fung the sequence with nth term un, if first term is u1

Sn the sum of the first n terms of a sequence

S1 the sum to infinity of a convergent series
nP

i=1

ui u1 + u2 + u3 + :::: + un

nQ
i=1

ui u1 £ u2 £ u3 £ :::: £ un

lim
x!a

f(x) the limit of f(x) as x tends to a

lim
x!a+

f(x) the limit of f(x) as x tends to a from the positive side of a

lim
x!a¡

f(x) the limit of f(x) as x tends to a from the negative side of a

maxfa, bg the maximum value of a or b
1P
n=0

cn x
n the power series whose terms have form cn x

n

dy

dx
the derivative of y with respect to x

IB HL OPT 2ed
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7

f 0(x) the derivative of f(x) with respect to x

d2y

dx2
the second derivative of y with respect to x

f 00(x) the second derivative of f(x) with respect to x

dny

dxn
the nth derivative of y with respect to x

f (n)(x) the nth derivative of f(x) with respect to xR
y dx the indefinite integral of y with respect to xR b

a
y dx the definite integral of y with respect to x between the

limits x = a and x = b
ex exponential function of x

lnx the natural logarithm of x

sin, cos, tan the circular functions

csc, sec, cot the reciprocal circular functions

arcsin, arccos, arctan the inverse circular functions¡
n
r

¢ n!

r!(n¡ r)!

P(A) probability of event A

P(A0) probability of the event “not A”

P(A j B) probability of the event A given B

x1, x2, .... observations

P(x) probability distribution function Px = P(X = x) of the discrete random

variable X

f(x) probability density function of the continuous random variable X

F (x) cumulative distribution function of the continuous random variable X

E(X) the expected value of the random variable X

Var(X) the variance of the random variable X

¹ population mean

¾2 population variance, the value ¾2 =

nP
i=1

(xi ¡ ¹)2

n
, for a population of size n

¾ population standard deviation

x sample mean

s 2
n sample variance, the value s 2

n =

nP
i=1

(xi ¡ x)2

n
, from a sample of size n

sn standard deviation of the sample of size n

s 2
n¡1 unbiased estimate of the population variance, the value

s 2
n¡1 =

n

n¡ 1
s 2
n =

nP
i=1

(xi ¡ x)2

n¡ 1
, from a sample of size n

X the estimator of ¹, that is the function X =
1

n

nP
i=1

Xi, where Xi, i = 1, ...., n

are identically distributed independent random variables each with mean ¹

IB HL OPT 2ed
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8

S 2
n the biased estimator of ¾2, that is the function S 2

n =

nP
i=1

(Xi ¡X)2

n

where Xi, i = 1, ...., n are identically distributed independent random variables

each with variance ¾2

S 2
n¡1 the unbiased estimator of ¾2, that is the function S 2

n¡1 =
n

n¡ 1
S 2
n

DU(n) discrete uniform distribution with parameter n

B(1, p) Bernoulli distribution with parameter p

B(n, p) binomial distribution with parameters n and p

Geo(p) geometric distribution with parameter p

NB(r, p) negative binomial distribution with parameters r and p

Po(m) Poisson distribution with mean m

X » DU(n) the random variable X has a discrete uniform distribution with parameter n

X » B(1, p) the random variable X has a Bernoulli distribution with parameter p

X » B(n, p) the random variable X has a binomial distribution with parameters n and p

X » Geo(p) the random variable X has a geometric distribution with parameter p

X » NB(r, p) the random variable X has a negative binomial distribution with parameters r and p

X » Po(m) the random variable X has a Poisson distribution with mean m

U(a, b) continuous uniform distribution with parameters a and b

Exp(¸) exponential distribution with mean
1

¸

N(¹, ¾2) normal distribution with mean ¹ and variance ¾2

º number of degrees of freedom

t(º) Student’s t-distribution with º degrees of freedom

X » U(a, b) the random variable X has a continuous uniform distribution with parameters a and b

X » Exp(¸) the random variable X has an exponential distribution with mean
1

¸

X » N(¹, ¾2) the random variable X has a normal distribution with mean ¹ and variance ¾2

T » t(º) the random variable T has the Student’s t-distribution with º degrees of freedom

G(t) the probability generating function E(tX) for a discrete random variable X which

takes values in N

p depending on the context, a parameter of a distribution, a population proportion,

or a p-value in a hypothesis testbp a sample proportion

H0 null hypothesis

H1 alternative hypothesis

® significance level or probability of a Type I error

¯ probability of a Type II error

1 ¡ ¯ power of a hypothesis test

Cov(X, Y ) covariance of random variables X and Y

½ product moment correlation coefficient between two random variables

R the sample product moment correlation coefficient; an estimator of ½

r the observed value of R for a given sample of bivariate data; an estimate of ½
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STATISTICS AND PROBABILITY 9

A random variable can take any one of a set of values from a given domain, according to given

probabilities. The domain may be discrete or continuous.

DISCRETE RANDOM VARIABLES

If X is a discrete random variable, then:

1 X has possible values x1, x2, x3, .... . To determine the value of X we usually count.

2 X takes value xi with probability pi, where 0 6 pi 6 1, i = 1, 2, 3, ...., and
P

pi = 1.

3 X has a probability distribution function (or probability mass function)

P (x), where P (xi) = P(X = xi) = pi, i = 1, 2, 3, .... .

4 X has a cumulative distribution function (CDF) F (x), where

F (x) = P(X 6 x) =
P

xi6x

P(X = xi).

F (x) is the probability that X takes a value less than or equal to x.

Examples of discrete probability distributions and random variables covered in

the Core course include Bernoulli, Discrete Uniform, Binomial, and Poisson.

CONTINUOUS RANDOM VARIABLES

If X is a continuous random variable, then:

1 The possible values of X may be all x 2 R , or all real x in some domain [a, b]. To determine the

value of X we usually measure.

2 X has a continuous probability density function (PDF) f(x), where:

² f(x) > 0 for all x in the domain of f .

²
Z 1

¡1
f(x) dx = 1 if the domain of f is R , orZ b

a

f(x) dx = 1 if the domain of f is [a, b].

3 Suppose f and the PDF for X, have domain [a, b]. X has a cumulative distribution function

(CDF) F (x), where F (x) = P(X 6 x) =

Z x

a

f(t) dt for x 2 [a, b].

² F (x) is the probability that X takes a value less than

or equal to x.

² F (b) =

Z b

a

f(t) dt = 1

EXPECTATION ALGEBRAA

reads “the sum for all

values of xi less

than or equal to x”.

P
xi6x

y

x

Area = 1
y = f(x)

y

t

Area = F(x)
y = f(t)

a bx
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10 STATISTICS AND PROBABILITY

² The probability that X takes a value in the interval

[c, d] µ [a, b] is given by

P(c 6 X 6 d) =

Z d

c

f(t) dt

= F (d) ¡ F (c)

4 Since X has infinitely many possible values, the probability that X takes a single value X = x
is 0. However, since X is a continuous random variable, for x 2 Z and x ¡ 0:5 6 X < x + 0:5,

the value of X will be rounded to the integer x.

Thus, for x 2 Z , we define P(X = x) = P(x ¡ 0:5 6 X < x + 0:5)

=

Z x+0:5

x¡0:5

f(t) dt

= F (x + 0:5) ¡ F (x ¡ 0:5)

Given a random variable X » N(7:2, 28), find P(X = 10).

P(X = 10) = P(9:5 6 X < 10:5)

¼ 0:0655

For a continuous random variable X, P(c 6 X < d)

= P(c 6 X 6 d)

= P(c < X 6 d)

= P(c < X < d)

since the corresponding integrals all define the same area under the curve y = f(t) between t = c

and t = d.

Examples of continuous probability distributions and random variables covered in the Core course include

Continuous Uniform, Exponential, and the Normal distribution.

EXPECTATION

The mean or expected value or expectation E(X) of a random variable X is defined as follows:

² If X is a discrete random variable with set of possible values x1, x2, .... and probability mass

function P(X = xi) = pi, i = 1, 2, .... , E(X) = ¹ =
P
i

xi P(X = xi)

=
P
i

xi pi, i = 1, 2, ....

² If X is a continuous random variable with probability density function f(x) with domain [a, b],

E(X) = ¹ =

Z b

a

xf(x) dx.

Example 1

You should recognise

the Normal distribution

from the Core course.

y

ta bdc

Area P= (c X )6 6 d
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STATISTICS AND PROBABILITY 11

Find the expectation of the following random variables:

a a discrete random variable X with probability distribution: x 1 2

P(X = x) 2
3

1
3

b the continuous uniform random variable X » U(1, 4).

a E(X) = 1 £ 2
3 + 2 £ 1

3

= 4
3

b E(X) =

Z 4

1

x £ 1
3 dx

=

·
x2

6

¸ 4
1

= 15
6

= 5
2

Theorem 1

1 E(d) = d for any constant d.

2 E(cX + d) = cE(X) + d for X a random variable and constants c, d 2 R .

Proof: 1 A constant d takes value d with probability 1.

) by definition, E(d) = d £ 1 = d.

2 Discrete Case: X takes value xi with probability pi.
Let U = cX + d be a new random variable.

) U takes value cxi + d with probability pi, i = 1, 2, .... .

) by the definition of E(U),

E(U) = E(cX + d) =
P

(cxi + d) pi

=
P

(cxipi + dpi)

= c
P

xipi + d
P

pi

= cE(X) + d fsince
P

pi = 1g
Continuous Case: If X has PDF f(x) with domain [a, b], then

E(cX + d) =

Z b

a

(cx + d) f(x) dx

= c

Z b

a

x f(x) dx + d

Z b

a

f(x) dx

= cE(X) + d fsince

Z b

a

f(x) dx = 1g

Example 2
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12 STATISTICS AND PROBABILITY

Consider a 6-sided unbiased die with face labels: ¡2, ¡2, 0, 1, 1, 2.

Let X be the discrete random variable with possible values the outcome of a roll of the die.

a Find E(X) and E(X2). b Show that E(X2) 6= (E(X))2.

a The discrete random variable X
has probability distribution:

x ¡2 0 1 2

P(X = x) 1
3

1
6

1
3

1
6

) E(X) = ¡2 £ 1
3 + 0 £ 1

6 + 1 £ 1
3 + 2 £ 1

6 = 0

Consider the variable X2 which has possible values 0, 1, and 4.

X2 has probability distribution: X2 0 1 4

Probability 1
6

1
3

1
2

P(X2 = 4)

= P(X = ¡2 or 2)

= 1
3 + 1

6

= 1
2

) E(X2) = 0 £ 1
6 + 1 £ 1

3 + 4 £ 1
2 = 7

3

b E(X2) = 7
3 6= 0 = (E(X))2

In Example 3 we see that E(X2) = 02 £ 1
6 + 12 £ 1

3 + 4 £ ¡ 13 + 1
6

¢
= 02 £ 1

6 + 12 £ 1
3 + (¡2)2 £ 1

3 + 22 £ 1
6

=
4P

i=1

x 2
i pi

where X has values x1 = ¡2, x2 = 0, x3 = 1, x4 = 2 with probabilities p1 = 1
3 , p2 = 1

6 , p3 = 1
3 ,

p4 = 1
6 respectively.

) E(g(x)) =
P

g(xi) pi, where g(X) = X2.

This result generalises for any function g.

Theorem 2

Suppose X is a random variable and g is any function. The random variable g(X) has mean given by:

Discrete case: E(g(X)) =
P

g(xi) pi

Continuous case: E(g(X)) =

Z
g(x) f(x) dx

Proof for the discrete case:

g(X) has values g(x1), g(x2), .... which are not necessarily distinct.

g(X) takes value g(xi) with probability pi, i = 1, 2, 3, ::::, or if

g(x) = g(x1) = :::: = g(xk) then g(X) takes value g(x) with

probability p1 + p2 + :::: + pk.

Hence, from the definition of expected value, E(g(x)) =
P

g(xi) pi.

Example 3

The proof for the continuous

case is analogous.
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STATISTICS AND PROBABILITY 13

Corollary: For X a random variable, E(cg(X) § dh(X)) = cE(g(X)) § dE(h(X))

where c, d are constants and g(x) and h(x) are functions.

Proof for the discrete case:

By Theorem 1 and Theorem 2, E(cg(X) § dh(X))

=
P

(cg(xi) § dh(xi)) pi

= c
P

g(xi) pi § d
P

h(xi) pi

= cE(g(X)) § dE(h(X))

VARIANCE

The variance ¾2, also denoted Var(X), of a random variable X is

¾2 = Var(X) = E((X ¡ ¹)2), where ¹ = E(X).

Var(X) is the mean of the squared differences of values of X from the mean value of X, E(X).

Var(X) is therefore a measure of the spread of the distribution of X.

Theorem 3

For X a random variable, Var(X) = E(X2) ¡ fE(X)g2.

Proof: Var(X) = E((X ¡ ¹)2)

= E(X2 ¡ 2X¹ + ¹2)

= E(X2) ¡ E(2¹X) + E(¹2) fby the Corollary to Theorem 2g
= E(X2) ¡ 2¹E(X) + ¹2 fby Theorem 1g
= E(X2) ¡ 2¹2 + ¹2

= E(X2) ¡ ¹2

= E(X2) ¡ fE(X)g2

Using Theorem 3, we find that:

Discrete case: Var(X) =
¡P

x 2
i pi

¢¡ ¹2

Continuous case: Var(X) =

Z
x2 f(x) dx ¡ ¹2

Theorem 4

For X a random variable and constants c, d 2 R :

1 Var(d) = 0

2 Var(cX + d) = c2Var(X)

Proof:

1 For any constant d,

Var(d) = E(d2) ¡ fE(d)g2 fby Theorem 3g
= d2 ¡ d2 fby Theorem 1 since d2, d are constantsg
= 0
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14 STATISTICS AND PROBABILITY

2 Var(cX + d) = E((cX + d)2) ¡ fE(cX + d)g2
= E(c2X2 + 2cdX + d2) ¡ fcE(X) + dg2
= c2E(X2) + 2cdE(X) + E(d2) ¡ fc2(E(X))2 + 2cdE(X) + d2g
= c2E(X2) + d2 ¡ c2(E(X))2 ¡ d2

= c2fE(X2) ¡ fE(X)g2g
= c2Var(X) fby Theorem 3g

LINEAR TRANSFORMATION OF A SINGLE RANDOM VARIABLE

Let X be a random variable. Let U be a new random variable obtained from X by the linear

transformation U = cX + d, where c, d are constants.

By Theorems 1 and 4 we have:

E(U) = E(cX + d) = cE(X) + d

and Var(U) = Var(cX + d) = c2Var(X)

Theorem 5

Let X be a random variable with mean ¹ and standard deviation ¾.

Then X¤ =
X ¡ ¹

¾
is a random variable with E(X¤) = 0 and Var(X¤) = 1.

X¤ =
X ¡ ¹

¾
is called the standardised variable corresponding to X.

Proof: E(X¤) = E
³
1

¾
X ¡ ¹

¾

´
=

1

¾
E(X) ¡ ¹

¾

=
1

¾
£ ¹ ¡ ¹

¾

= 0

and Var(X¤) = Var
³
1

¾
X ¡ ¹

¾

´
=

1

¾2
Var(X)

=
1

¾2
£ ¾2

= 1

For example, if X » N(¹, ¾2) is a continuous random variable with a normal distribution with mean ¹

and variance ¾2, then Z =
X ¡ ¹

¾
has E(Z) = 0 and Var(Z) = 1.

Z » N(0, 1), where N(0, 1) is the standard normal distribution, as studied in the Core course.

DEFINING NEW RANDOM VARIABLES FROM OLD

In the following example we use two random variables X and Y to define new random variables 3X¡5,

X2, X + Y , and XY .

We observe how the mean and variance of the new random variables are related to the mean and variance

of X and Y , as shown in Theorems 1 - 4.
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STATISTICS AND PROBABILITY 15

Let X be the random variable with value

the outcome of spinning the equilateral

triangle spinner:

Let Y be the random variable with

value the outcome of spinning the regular

pentagon spinner:

a Determine the probability distributions for each of:

i X and X2 ii Y and Y 2 iii 3X ¡ 5 and (3X ¡ 5)2

iv X + Y and (X + Y )2 v XY and (XY )2

b Find the mean and variance of:

i X ii Y iii 3X ¡ 5

iv X + Y v XY

c Verify that:

i fE(X)g2 6= E(X2)

ii E(3X ¡ 5) = 3E(X) ¡ 5 and Var(3X ¡ 5) = 32 £ Var(X)

iii E(X + Y ) = E(X) + E(Y ) and Var(X + Y ) = Var(X) + Var(Y )

iv E(XY ) = E(X) E(Y )

a i X has probability

distribution:

X 1 2

Probability 2
3

1
3

X has values 1, 2

) X2 has values 12 = 1, 22 = 4

) X2 has probability distribution: X2 1 4

Probability 2
3

1
3

ii Y has probability distribution:

Y ¡2 2 3

Probability 1
5

3
5

1
5

Y has values ¡2, 2, 3

) Y 2 has values (¡2)2 = 4, 22 = 4, 32 = 9

P(Y 2 = 9) = P(Y = 3) = 1
5 and P(Y 2 = 4) = P(Y = ¡2 or Y = 2)

= 1
5 + 3

5

= 4
5

) Y 2 has probability distribution: Y 2 4 9

Probability 4
5

1
5

Example 4

X and Y are independent

random variables.

1

1 2

3

2

22
-2
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16 STATISTICS AND PROBABILITY

iii X 1 2

3X ¡ 5 ¡2 1

(3X ¡ 5)2 4 1

Probability 2
3

1
3

iv The possible outcomes of X + Y are:

X

Y

X + Y ¡2 2 3

1 ¡1 3 4

2 0 4 5

P((X + Y ) = ¡1)

= P(X = 1 and Y = ¡2)

= P(X = 1) £ P(Y = ¡2)

= 2
3 £ 1

5

= 2
15

and P((X + Y ) = 4)

= P(X = 2 and Y = 2) + P(X = 1 and Y = 3)

= 1
3 £ 3

5 + 2
3 £ 1

5 fsince X and Y are independentg
= 5

15

and similarly for the remaining values.

) X + Y has probability distribution: X + Y ¡1 0 3 4 5

Probability 2
15

1
15

6
15

5
15

1
15

) (X + Y )2 has probability distribution: (X + Y )2 1 0 9 16 25

Probability 2
15

1
15

6
15

5
15

1
15

v The possible values of XY are:

X

Y

XY ¡2 2 3

1 ¡2 2 3

2 ¡4 4 6

P(XY = 3) = P(X = 1 and Y = 3)

= P(X = 1) £ P(Y = 3) fsince X and Y are independentg
= 2

3 £ 1
5

= 2
15 and similarly for the remaining values.

) XY has probability distribution: XY ¡4 ¡2 2 3 4 6

Probability 1
15

2
15

6
15

2
15

3
15

1
15

) (XY )2 has values (¡4)2 = 16, (¡2)2 = 4, 22 = 4, 32 = 9, 42 = 16, 62 = 36.

P((XY )2 = 16) = P(XY = ¡4 or XY = 4)

= P(XY = ¡4) + P(XY = 4)

= 1
15 + 3

15

= 4
15 and similarly for the remaining values.

) (XY )2 has probability distribution: (XY )2 4 9 16 36

Probability 8
15

2
15

4
15

1
15
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STATISTICS AND PROBABILITY 17

b i E(X) = 1 £ 2
3 + 2 £ 1

3 = 4
3

Var(X) = E(X2) ¡ fE(X)g2
= f1 £ 2

3 + 4 £ 1
3g ¡ f4

3g2
= 2 ¡ 16

9

= 2
9

ii E(Y ) = ¡2 £ 1
5 + 2 £ 3

5 + 3 £ 1
5 = 7

5

Var(Y ) = E(Y 2) ¡ fE(Y )g2
= f4 £ 4

5 + 9 £ 1
5g ¡ f7

5g2
= 5 ¡ 49

25

= 76
25

iii E(3X ¡ 5) = ¡2 £ 2
3 + 1 £ 1

3 = ¡1

Var(3X ¡ 5) = E((3X ¡ 5)2) ¡ fE(3X ¡ 5)g2
= f4 £ 2

3 + 1 £ 1
3g ¡ f¡1g2

= 2

iv E(X + Y ) = ¡1 £ 2
15 + 0 £ 1

15 + 3 £ 6
15 + 4 £ 5

15 + 5 £ 1
15

= 41
15

Var(X + Y ) = E((X + Y )2) ¡ fE(X + Y )g2
= f1 £ 2

15 + 0 £ 1
15 + 9 £ 6

15 + 16 £ 5
15 + 25 £ 1

15g ¡ f41
15g2

= 734
225

v E(XY ) = ¡4 £ 1
15 ¡ 2 £ 2

15 + 2 £ 6
15 + 3 £ 2

15 + 4 £ 3
15 + 6 £ 1

15

= 28
15

Var(XY ) = E((XY )2) ¡ fE(XY )g2
= f4 £ 8

15 + 9 £ 2
15 + 16 £ 4

15 + 36 £ 1
15g ¡ f28

15g2
= 1466

225

c i E(X2) = 1 £ 2
3 + 4 £ 1

3 = 2 and fE(X)g2 = f4
3g2 = 16

9 6= 2.

Hence E(X2) 6= fE(X)g2
ii E(3X ¡ 5) = ¡1 and 3E(X) ¡ 5 = 3 £ 4

3 ¡ 5 = ¡1.

Hence E(3X ¡ 5) = 3E(X) ¡ 5.

Var(3X ¡ 5) = 2 and 32 £ Var(X) = 9 £ 2
9 = 2.

Hence Var(3X ¡ 5) = 32Var(X).

iii E(X + Y ) = 41
15 and E(X) + E(Y ) = 4

3 + 7
5 = 41

15 .

Hence E(X + Y ) = E(X) + E(Y ).

Var(X + Y ) = 734
225 and Var(X) + Var(Y ) = 2

9 + 76
25 = 734

225 .

Hence Var(X + Y ) = Var(X) + Var(Y ).

iv E(XY ) = 28
15 and E(X)E(Y ) = 4

3 £ 7
5 = 28

15 .

Hence E(XY ) = E(X)E(Y ).

We now summarise and prove the results observed in the previous example.

Theorem 6

For X, Y two random variables (either both discrete or both continuous):

1 E(X + Y ) = E(X) + E(Y )

2 If X and Y are independent, then Var(X + Y ) = Var(X) + Var(Y )

and E(XY ) = E(X)E(Y )

IB HL OPT 2ed
magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-Stat-Prob\IB_HL_OPT-Stat-Prob_01\017IB_HL_OPT-Stat-Prob_01.cdr Friday, 5 April 2013 3:32:54 PM BRIAN



18 STATISTICS AND PROBABILITY

Proof for the discrete case:

1 E(X + Y )

=
P
x

P
y

(x + y) P(X = x and Y = y)

=
P
x

P
y

xP(X = x and Y = y) +
P
x

P
y

yP(X = x and Y = y)

=
P
x

x
P
y

P(X = x and Y = y) +
P
y

y
P
x

P(X = x and Y = y)

fx is constant whilst

summing over y.g
fBy first changing the order of the

sum, we notice y is constant whilst

summing over x.g

=
P
x

xP(X = x) +
P
y

yP(Y = y) fIn a joint probability distribution,

P(X = x) =
P
all y

P(X = x and Y = y)

and P(Y = y) =
P
all x

P(X = x and Y = y)

This is equivalent to summing a whole row or

whole column in an array of a joint probability

distribution.g
= E(X) + E(Y )

2 For X and Y independent, P(X = x and Y = y) = P(X = x)P(Y = y)

E(XY ) =
P
x

P
y

xyP(X = x and Y = y)

=
P
x

P
y

xyP(X = x)P(Y = y)

=
P
x

xP(X = x)
P
y

yP(Y = y)

fx and P(X = x) are constants while summing over yg
=
P
x

xP(X = x)E(Y )

= E(Y )
P
x

xP(X = x) fE(Y ) is a constant while summing over xg

= E(Y )E(X)

= E(X)E(Y )

Var(X + Y ) = E((X + Y )2) ¡ fE(X + Y )g2
= E(X2 + 2XY + Y 2) ¡ fE(X) + E(Y )g2 fBy part 1 of Theorem 6g
= E(X2) + 2E(XY ) + E(Y 2) fCorollary to Theorem 2g

¡ ffE(X)g2 + 2E(X)E(Y ) + fE(Y )g2g fusing E(XY ) = E(X)E(Y )
from aboveg

= E(X2) ¡ fE(X)g2| {z }+ E(Y 2) ¡ fE(Y )g2| {z }
= Var(X) + Var(Y )

is used to cover all possible

outcomes for added to

all possible outcomes for .

X

Y

P
x

P
y
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STATISTICS AND PROBABILITY 19

In the following example we show that for X and Y dependent random variables either

E(XY ) 6= E(X)E(Y ) or E(XY ) = E(X)E(Y ), depending on the example.

For each of the following distributions for X, let Y = X2 be a random variable dependent on X.

Compare E(XY ) with E(X)E(Y ).

a x ¡1 0 1

P(X = x) 1
3

1
3

1
3

b x 1 2 3

P(X = x) 1
3

1
3

1
3

a E(X) = ¡1 £ 1
3 + 0 £ 1

3 + 1 £ 1
3 = 0

Let Y = X2, so Y is dependent on X.

P(X2 = 1) = P(X = 1 or X = ¡1)

= 1
3 + 1

3

= 2
3

) Y has probability distribution: Y = X2 0 1

Probability 1
3

2
3

) E(Y ) = E(X2) = 0 £ 1
3 + 1 £ 2

3 = 2
3

Consider XY = X3 which has values ¡1, 0, 1

XY has probability distribution: XY = X3 ¡1 0 1

Probability 1
3

1
3

1
3

) E(XY ) = E(X3) = ¡1 £ 1
3 + 0 £ 1

3 + 1 £ 1
3 = 0

Hence E(XY ) = 0 and E(X)E(Y ) = 0 £ 2
3 = 0

Thus E(XY ) = E(X)E(Y ) even though X and Y are dependent.

b E(X) = 1 £ 1
3 + 2 £ 1

3 + 3 £ 1
3 = 2

Let Y = X2 which has values 1, 4, 9

Y 1 4 9

Probability 1
3

1
3

1
3 ) E(Y ) = 1 £ 1

3 + 4 £ 1
3 + 9 £ 1

3 = 14
3

Consider XY = X3 which has values 1, 8, 27

X3 1 8 27

Probability 1
3

1
3

1
3 ) E(X3) = 1 £ 1

3 + 8 £ 1
3 + 27 £ 1

3 = 12

Hence E(XY ) = E(X3) = 12 but E(X)E(Y ) = 2 £ 14
3 = 28

3

) E(XY ) 6= E(X)E(Y )

Example 5
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20 STATISTICS AND PROBABILITY

We now summarise the main results for this section which we obtain from the theorems above and by

Mathematical Induction:

Theorem 7

For X1, X2, ...., Xn random variables (either all discrete or all continuous) and a1, a2, ...., an
constants:

1 E(a1X1 § a2X2 § :::: § anXn) = a1E(X1) § a2E(X2) § :::: § anE(Xn)

2 If X1, X2, ...., Xn are independent random variables, then

E(X1X2::::Xn) = E(X1)E(X2) ::::E(Xn) and

Var(a1X1 § a2X2 § :::: § anXn) = a 2
1 Var(X1) + a 2

2 Var(X2) + :::: + a 2
n Var(Xn)

Proof:

1 By Theorem 1, E(§aiXi) = §aiE(Xi)

) E(a1X1 § a2X2 § :::: § an¡1Xn¡1 § anXn)

= E(a1X1 § a2X2 § :::: § an¡1Xn¡1) § anE(Xn)

= E(a1X1 § a2X2 § :::: § an¡2Xn¡2) § an¡1E(Xn¡1) § anE(Xn)

...

= a1E(X1) § a2E(X2) § :::: § anE(Xn)

frepeated use of

Theorem 6g

2 E(X1X2::::Xn) = E(X1X2::::Xn¡1)E(Xn)

= E(X1X2::::Xn¡2)E(Xn¡1)E(Xn)

...

= E(X1)E(X2)::::E(Xn)

fletting Y = X1X2::::Xn¡1,

X = Xng

frepeated use of Theorem 6g
By Theorem 4, Var(§aiXi) = a 2

i Var(Xi)

By Theorem 6, letting X = a1X1 § :::: § an¡1Xn¡1 and Y = §anXn,

Var(a1X1 § a2X2 § :::: § an¡1Xn¡1 § anXn)

= Var(a1X1 § a2X2 § :::: § an¡1Xn¡1) + a 2
n Var(Xn)

= Var(a1X1 § :::: § an¡2Xn¡2) + a 2
n¡1Var(Xn¡1) + a 2

n Var(Xn)

...

= a 2
1 Var(X1) + :::: + a 2

n Var(Xn)

frepeated use of

Theorem 6g

CONTINUOUS NORMALLY DISTRIBUTED RANDOM VARIABLES

Theorem 8

Any linear combination of independent continuous normally

distributed random variables is itself a continuous and

normally distributed random variable.

A linear combination of

X1 , X2 , X3 has the form

a1X1 + a2X2 + a3X3

where a1 , a2 , a3 are constants.
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STATISTICS AND PROBABILITY 21

For example, if X1, X2, X3 are independent normal random variables then Y = 2X1 + 3X2 ¡ 4X3

is a normal random variable.

By Theorem 7, E(Y ) = E(2X1 + 3X2 ¡ 4X3)

= 2E(X1) + 3E(X2) ¡ 4E(X3)

and Var(Y ) = Var(2X1 + 3X2 ¡ 4X3)

= 4Var(X1) + 9Var(X2) + 16Var(X3)

By Theorem 8, Y » N(E(Y ), Var(Y )).

The weights of male employees in a bank are normally distributed with mean ¹ = 71:5 kg and

standard deviation ¾ = 7:3 kg. The bank has an elevator which will carry a maximum load of

444 kg.

a Six male employees enter the elevator. Calculate the probability that their combined weight

exceeds the maximum load.

b If there is to be at most a 0:1% chance of the total weight exceeding 444 kg, recommend the

maximum number of males who should use the lift together.

a Let the weights of the employees be the independent random variables X1, X2, ...., X6.

We are concerned with the sum of their weights Y = X1 + X2 + X3 + X4 + X5 + X6,

where Xi » N(71:5, (7:3)2), i = 1, 2, ...., 6.

Now E(Y ) = E(X1) + E(X2) + :::: + E(X6)

= 6 £ 71:5

= 429 kg

and Var(Y )

= Var(X1) + Var(X2) + :::: + Var(X6)

= 6 £ 7:32

= 319:74

) Y is normally distributed with mean 429 kg and variance 319:75 kg2

) Y » N(429, 319:74)

Now P(Y > 444) ¼ 0:201

So, there is a 20:1% chance that their combined weight will exceed 444 kg.

b Six men is too many, as there is a 20:1% chance of overload.

Instead we try 5 male employees with total weight Y = X1 + X2 + X3 + X4 + X5.

E(Y ) = 5 £ 71:5 Var(Y ) = 5 £ 7:32

= 357:5 kg ¼ 266:45 kg2

Now Y » N(357:5, 266:45)

) P(Y > 444) ¼ 5:82 £ 10¡8

For n = 5, there is much less than a 0:1% chance of the total weight exceeding 444 kg.

We recommend that a maximum of 5 men use the elevator together.

Example 6
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22 STATISTICS AND PROBABILITY

The random variable X has distribution with mean 11 and standard deviation 2.

Define three independent random variables X1 = 2X, X2 = 4 ¡ 3X, and X3 = 4X + 1.

Find the mean and standard deviation of the random variable (X1 + X2 + X3).

Mean

= E(X1 + X2 + X3)

= E(X1) + E(X2) + E(X3)

= 2E(X) + (4 ¡ 3E(X)) + (4E(X) + 1)

= 3E(X) + 5

= 3(11) + 5

= 38

Variance

= Var(X1 + X2 + X3)

= Var(X1) + Var(X2) + Var(X3)

= 4Var(X) + 9Var(X) + 16Var(X)

= 29Var(X)

= 29 £ 22

= 116

) the mean is 38 and the standard deviation is
p

116 ¼ 10:8 .

Mean (g) Variance (g2)

Small 315 4

Economy 950 25

A cereal manufacturer produces packets of cereal

in two sizes, small and economy.

The amount in each packet is distributed normally

and independently with mean and variance as shown

in the table.

a A packet of each size is selected at random. Find the probability that the economy packet

contains less than three times the amount in the small packet.

b One economy and three small packets are selected at random. Find the probability that the

economy packet contains less than the total amount in the three small packets.

Let S be the weight of a small packet and E be the weight of an economy packet.

) S » N(315, 4) and E » N(950, 25).

a The probability that the economy packet contains less than three times the amount in a small

packet, is P(E < 3S) or P(E ¡ 3S < 0).

Now E(E ¡ 3S)

= E(E) ¡ 3E(S)

= 950 ¡ 3 £ 315

= 5

and Var(E ¡ 3S)

= Var(E) + 9Var(S)

= 25 + 9 £ 4

= 61

) E ¡ 3S » N(5, 61)

) P(E ¡ 3S < 0) ¼ 0:261

b The probability that the economy packet contains less than the total amount in the three small

packets is P(E < S1 + S2 + S3) or P(E ¡ (S1 + S2 + S3) < 0), where S1, S2, S3 each

have distribution N(315, 4).

Now E(E ¡ (S1 + S2 + S3))

= E(E) ¡ 3E(S)

= 950 ¡ 3 £ 315

= 5

and Var(E ¡ (S1 + S2 + S3))

= Var(E) + Var(S1) + Var(S2) + Var(S3)

= 25 + 12

= 37

) E ¡ (S1 + S2 + S3) » N(5, 37)

) P(E ¡ (S1 + S2 + S3) < 0) ¼ 0:206

Example 8

Example 7
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STATISTICS AND PROBABILITY 23

EXERCISE A

1 Given a random variable X » N(5, 22), find:

a P(X = 24) b P(X = 30) c P(X = 11)

2 Find the expectation of the following random variables:

a a discrete random variable X with probability distribution: x ¡1 1 3

P(X = x) 1
2

1
3

1
6

b the continuous uniform random variable X » U(0, 5).

3 Consider a 6-sided unbiased die with face labels ¡3, ¡1, ¡1, 2, 2, 3. Let X be the discrete random

variable with possible values the outcome of a roll of the die.

a Find E(X) and E(X2). b Show that E(X2) 6= (E(X))2.

4 Let X be the number of heads obtained when an unbiased coin is tossed twice.

Let Y be the result when an ordinary unbiased 6-sided die is rolled once.

a Write down the probability distributions for each of:

i X and X2 ii Y and Y 2 iii X + Y and (X + Y )2

iv 4X ¡ 2Y and (4X ¡ 2Y )2 v XY and (XY )2

b Find the mean and variance of:

i X ii Y iii X + Y iv 4X ¡ 2Y v XY

c Verify that:

i E(X + Y ) = E(X) + E(Y ) and Var(X + Y ) = Var(X) + Var(Y )

ii E(4X ¡ 2Y ) = 4E(X) ¡ 2E(Y ) and Var(4X ¡ 2Y ) = 16Var(X) + 4Var(Y )

iii E(XY ) = E(X)E(Y )

5 X and Y are two discrete random variables with E(X) = 3, E(Y ) = 2, Var(X) = 3
2 , and

Var(Y ) = 5
4 . Calculate, where possible:

a E(X + Y ) b E(XY ) c Var(2X ¡ 3Y + 6) d E(5XY )

Hint: You need to consider the two cases: X, Y are independent and X, Y are dependent.

6 For each of the following distributions for X, let Y = X2 be a random variable. Hence compare

E(XY ) with E(X)E(Y ).

a x 0 1 2 3

P(X = x) 1
4

1
4

1
4

1
4

b x ¡1 0 1 2

P(X = x) 1
4

1
4

1
4

1
4

7 Consider two independent normally distributed random variables X
and Y with means and standard deviations shown.

a Find the mean and standard deviation of 3X ¡ 2Y .

b Find P(3X ¡ 2Y > 3). State clearly any results you use.

¹ ¾

X 3:8 0:323

Y 5:7 1:02

8 The marks in an IB Mathematics HL exam are distributed normally with mean ¹ and standard

deviation ¾. The cut off score for a 7 is a mark of 80%, and 10% of students get a 7. The cut off

score for a 6 is a mark of 65%, and 20% of students get a 6. Find the mean and standard deviation

of the marks in this exam.
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24 STATISTICS AND PROBABILITY

9 The maximum load of a lift is 440 kg. The weights of adults are normally distributed with mean 81 kg

and standard deviation 11 kg. The weights of children are normally distributed with mean 48 kg

and standard deviation 4 kg.

Find the probability that if the lift contains 4 adults and 3 children then the maximum load will be

exceeded. What assumption have you made in your calculation?

10 A coffee machine dispenses a cappuccino made up of black coffee distributed normally with

mean 120 mL and standard deviation 7 mL, and froth distributed normally with mean 28 mL

and standard deviation 4:5 mL.

Each cup is marked to a level of 135:5 mL, and if this is not attained then the customer will receive

their cappuccino free of charge.

Determine whether or not the proprietor needs to adjust the settings on her machine if she wishes

to give away no more than 1% of cappuccinos free.

11 X and Y are independent normal random variables with X » N(¡10, 1) and Y » N(25, 25).

a Find the mean and standard deviation of the random varible U = 3X + 2Y .

b Find P(U < 0).

12 A drinks manufacturer produces bottles of drink in two sizes, small (S) and large (L).

The distributions for the contents are independent, and normally distributed with

S » N(280 mL, 4 mL2) and L » N(575 mL, 16 mL2).

a A bottle of each size is selected at random. Find the probability that the large bottle contains

less than two times the amount in the small bottle.

b One large and two small bottles are selected at random. Find the probability that the large

bottle contains less than the total amount in the two small bottles.

13 Chocolate bars are produced independently in two sizes, small and large. The amount in each bar

is distributed normally and independently as S » N(21, 5) and L » N(90, 15).

a One of each type of bar is selected at random. Find the probability that the large bar contains

more than five times the amount in the small bar.

b One large and five small bars are selected at random. Find the probability that the large bar

contains more than the total amount in the five small bars.

14 In a gambling game you bet on the outcomes of two spinners. These outcomes are X and Y with

the following probability distributions:

x ¡3 ¡2 3 5

P(X = x) 0:25 0:25 0:25 0:25

y ¡3 2 5

P(Y = y) 0:5 0:3 0:2

a Briefly explain why these are well-defined probability distributions.

b Find the mean and standard deviation of each random variable.

c Suppose it costs $1 to get a spinner spun and you receive the dollar value of the outcome. For

example, if the result is 3 you win $3, but if the result is ¡3 you need to pay an extra $3. In

which game are you likely to achieve a better result? On average, do you expect to win, lose,

or break even? Justify your answer.

d Comment on the differences in standard deviation.
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STATISTICS AND PROBABILITY 25

e The players are now invited to play a $1 game using the sum of the scores obtained on each of

the spinners. For example, if the sum of the spinners is 10, you receive $10 after paying out

$1. Effectively you win $9.

i Copy and complete the table below to show the probability distribution of X + Y .

A grid may help you do this.

x + y ¡6 ¡5 :::: 10

P(x + y) 0:125

ii Calculate the mean and standard deviation of the variable U = X + Y .

iii Are you likely to win, lose, or draw in the new game? Justify your answer.
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26 STATISTICS AND PROBABILITY

In this section we present important examples of discrete random variables and examine their cumulative

distribution functions (CDF).

DISCRETE UNIFORM

A discrete uniform random variable X takes n distinct values x1, x2, ...., xn, and the probability

mass function is a constant. P(X = xi) =
1

n
, i = 1, 2, ...., n.

X has CDF F (x) = P(X 6 x) =
P

xi6x

P(X = xi).

We write X » DU(n).

For example, suppose an unbiased 6-sided die is labelled ¡2, ¡1, 0, 1, 2, 3.

The random variable X for the possible outcomes is X » DU(6) since

P(X = ¡2) = P(X = ¡1) = P(X = 0) = P(X = 1) = P(X = 2) = P(X = 3) = 1
6 .

The probability that the outcome from the roll of this die is less than or equal to 1 is

F (1) = P(X 6 1)

= P(X = ¡2) + P(X = ¡1) + P(X = 0) + P(X = 1)

= 4
6 .

BERNOULLI

A Bernoulli random variable X has two possible values 1 (‘success’) and 0 (‘failure’).

P(X = 1) = p = the probability of success in one trial

P(X = 0) = 1 ¡ p = the probability of failure in one trial

where p is a constant, 0 6 p 6 1.

X has CDF F (x) =
xP

k=0

pk(1 ¡ p)1¡k,

but note that there are only two values: F (0) = 1 ¡ p and F (1) = 1.

We write X » B(1, p).

Consider the toss of an unbiased coin. Let X = 1 if a head is tossed and let X = 0 if a tail is

the result.

a Show that X is a Bernoulli variable.

b Suppose that the CDF of X is F (x). Find F (0) and F (1), and interpret their meaning.

a P(X = 1) = 1
2 = p

P(X = 0) = 1
2 = 1 ¡ p

) X » B
¡
1, 1

2

¢
.

DISCRETE RANDOM VARIABLESB

Example 9
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STATISTICS AND PROBABILITY 27

b F (0) is the probability of no heads.

F (0) = P(tail)

= P(X = 0)

= 1
2

F (1) is the probability of at most one head.

F (1) = P(X 6 1)

= P(X = 0) + P(X = 1)

= 1
2 + 1

2 = 1

or F (1) =
1P

k=0

pk(1 ¡ p)1¡k

= p0(1 ¡ p)1 + p1(1 ¡ p)0

= (1 ¡ p) + p

= 1

The probability of “no heads or one head” covers all possibilities and therefore it is a certain

event.

BINOMIAL

A binomial random variable X has n + 1 distinct possible values,

x = 0, 1, 2, ...., n where x is the number of successes in n independent

Bernoulli trials B(1, p).

Thus P(X = x) =
¡
n
x

¢
px(1 ¡ p)n¡x, x = 0, 1, 2, ...., n, where p is

a constant, 0 6 p 6 1.

X has CDF F (x) = P(X 6 x)

=
xP

k=0

¡
n
k

¢
pk(1 ¡ p)n¡k

We write X » B(n, p).

We note from the HL Core course that E(X) = np and Var(X) = np(1 ¡ p).

A bag contains 3 red balls and 4 blue balls, all identical in shape.

Consider n = 8 trials of randomly choosing a ball from the bag, noting its colour, and then

replacing the ball in the bag.

Find the probability of choosing up to 2 red balls.

Let X be the number of red balls selected in 8 such (independent) trials.

Then P(X = x) =
¡
8
x

¢ ¡
3
7

¢x ¡4
7

¢8¡x
, x = 0, 1, 2, ...., 8 and X » B(8, 3

7 ).

The probability of choosing up to 2 red balls is F (2) =
2P

k=0

¡
8
k

¢ ¡
3
7

¢k ¡4
7

¢8¡k

=
¡
4
7

¢8
+ 8

¡
3
7

¢1 ¡ 4
7

¢7
+
¡
8
2

¢ ¡
3
7

¢2 ¡ 4
7

¢6
¼ 0:259

Example 10

When n = 1, X is a

Bernoulli random variable.
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28 STATISTICS AND PROBABILITY

EXERCISE B.1

1 The discrete random variable X is such that P(X = x) = k,

for x = 5, 10, 15, 20, 25, 30. Find:

a the probability distribution of X

b ¹, the expected value of X

c P(X < ¹)

d ¾, the standard deviation of X.

2 Consider the spinner alongside. Let X = 1 if the outcome is red,

and X = 0 if the outcome is white.

a Show that X is a Bernoulli variable.

b Suppose that the CDF of X is F (x). Find F (0) and F (1), and

interpret their meaning.

3 Consider the random variable X such that X » B(7, p), p < 0:5, and P(X = 4) = 0:097 24.

Find P(X = 2).

4 In Statsville, the probability that it will rain on any given day in August is 0:35 . Calculate the

probability that in a given week in August in Statsville, it will rain on:

a exactly 3 days b at least 3 days

c at most 3 days d exactly 3 days in succession.

State any assumptions made in your calculations.

5 A box contains a very large number of red and blue pens. The probability that a randomly selected

pen is blue, is 0:8 . How many pens would you need to select to be more than 90% certain of

picking at least one red pen? State any assumptions made in your calculations.

6 A satellite relies on solar cells for its operation and will be powered provided at least one of its cells

is working. Solar cells operate independently of each other, and the probability that an individual

cell fails within one year is 0:7 .

a For a satellite with 15 solar cells, find the probability that:

i all 15 cells fail within one year

ii the satellite is still operating at the end of one year.

b For a satellite with n solar cells, find the probability that it is still operating at the end of

one year.

c Hence, find the smallest number of cells required so that the probability of the satellite still

operating at the end of one year is at least 0:98 .

7 Seventy percent (70%) of the mail to ETECH Couriers is addressed to the Accounts Department.

a In a batch of 20 letters, what is the probability that there will be at least 11 letters to the

Accounts Department?

b On average 70 letters arrive each day. Find the mean and standard deviation of the number of

letters to the Accounts Department each day.

For more questions on the uniform

and binomial distributions, see the

Core course .Chapter 25
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STATISTICS AND PROBABILITY 29

8 The table gives information about the destination

and type of parcels handled by ETECH Couriers.

a Find the probability that a parcel is being

sent interstate given that it is priority paid.

Hint: Use Bayes theorem, see

HL Core text, Chapter 24.

Destination Priority Standard

Local 40% 70% 30%

Country 20% 45% 55%

Interstate 25% 70% 30%

International 15% 40% 60%

b If two standard parcels are selected, find the probability that exactly one will be leaving the

state, either interstate or international.

9 At a school fete fundraiser, an unbiased spinning wheel

has numbers 1 to 50 inclusive.

a Find the probability of getting a multiple of 7 in

one spin of the wheel.

b If the wheel is spun 500 times during the day,

what is the likelihood of getting a multiple of 7

more than 15% of the time?

c Suppose 20 people play each time the wheel is

spun. When a multiple of 7 comes up, $5 is paid

to players, but when it does not the players must

pay $1.

i How much would the wheel be expected to make or lose for the school if it was spun

500 times?

ii Find the probability that the school will lose money if the wheel is spun 500 times during

the day.

GEOMETRIC

Suppose a sports magazine gives away photographs of famous football players. 15 photographs are

randomly placed in every 100 magazines.

Let X be the number of magazines you purchase before you get a photograph.

P(X = 1) = P(the first magazine contains a photo) = 0:15

P(X = 2) = P(the second magazine contains a photo) = 0:15 £ 0:85

P(X = 3) = P(the third magazine contains a photo) = 0:15 £ (0:85)2

) P(X = x) = 0:15 £ (0:85)x¡1 for x = 1, 2, 3, 4, .... .

This is an example of a geometric distribution.

If X is the number of independent Bernoulli trials B(1, p), 0 < p 6 1, needed to obtain a successful

outcome, then X is a geometric discrete random variable and has probability mass function

P(X = x) = p(1 ¡ p)x¡1 where x = 1, 2, 3, 4, .... .

The CDF is F (x) = P(X 6 x) =
xP

k=1

p(1 ¡ p)k¡1 for x = 1, 2, 3, 4, .... .

We write X » Geo(p).
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30 STATISTICS AND PROBABILITY

In a spinning wheel game with numbers 1 to 50 on the wheel, you win if you get a multiple of 7.

Assuming the game is fair, find the probability that you will win:

a after exactly four games b after no more than three games

c after more than three games.

Let X be the number of games played until you win.

X » Geo(p) where p = 7
50 = 0:14 and 1 ¡ p = 0:86

a P(X = 4)

= p(1 ¡ p)3

= 0:14 £ (0:86)3

¼ 0:0890

b P(wins after no more than three games)

= P(X 6 3)

= p + p(1 ¡ p) + p(1 ¡ p)2

= p(1 + (1 ¡ p) + (1 ¡ p)2)

= 0:14(1 + 0:86 + 0:862)

¼ 0:364

or P(wins after no more than three games)

= P(X 6 3)

= 1 ¡ P(does not win in any of the first three games)

= 1 ¡ (1 ¡ p)3

= 1 ¡ 0:863

¼ 0:364

c P(wins after more than three games) = P(X > 3)

= 1 ¡ P(X 6 3)

¼ 1 ¡ 0:364 ffrom bg
¼ 0:636

Theorem 9

Suppose X » Geo(p), 0 < p < 1, is a geometric discrete random variable.

1 F (x) = P(X 6 x) =
xP

k=1

p(1 ¡ p)k¡1 = 1 ¡ (1 ¡ p)x

2 The modal value of X is x = 1.

Proof: 1
xP

k=1

p(1 ¡ p)k¡1 = p
xP

k=1

(1 ¡ p)k¡1

= pf1 + (1 ¡ p) + (1 ¡ p)2 + :::: + (1 ¡ p)x¡1g

= p

½
1¡ (1¡ p)x

p

¾
fsince we have a finite GSg

= 1 ¡ (1 ¡ p)x

2 P(X = 1) = p

P(X = x) = p(1 ¡ p)x¡1 6 p for x > 1, since 0 < p < 1.

) P(X = 1) = p is the highest probability in the distribution.

) x = 1 is the mode of the distribution of X » Geo(p).

Example 11
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STATISTICS AND PROBABILITY 31

NEGATIVE BINOMIAL (PASCAL’S DISTRIBUTION)

If X is the number of independent Bernoulli trials B(1, p), 0 < p < 1, required for r successes then

X has a negative binomial distribution.

We observe that if r = 1 then the negative binomial distribution is a geometric distribution.

In grand slam mens tennis, the player who wins a match is the first player to win 3 sets.

Suppose that P(Novak beats Rafael in one set) = 0:55 . Find the probability that when Novak

plays Rafael in the grand slam event:

a Novak wins the match in three sets b Novak wins the match in four sets

c Novak wins the match in five sets d Rafael wins the match.

Let X be the number of sets played until Novak wins.

a P(X = 3)

= (0:55)3

¼ 0:166

b P(X = 4)

= P(RNNN or NRNN or NNRN)

= 3 £ 0:553 £ 0:451 ¼ 0:225

c P(X = 5)

= P(RRNNN or RNRNN or RNNRN or NRRNN or NRNRN or NNRRN)

= 6 £ 0:553 £ 0:452

¼ 0:202

d P(Rafael wins the match)

= 1 ¡ P(Novak wins the match)

= 1 ¡ (0:553 + 3 £ 0:553 £ 0:45 + 6 £ 0:553 £ 0:452)

¼ 0:407

Examining b from the above Example 12, we notice that

P(X = 4) = P(Novak wins 2 of the first 3 and wins the 4th) =
¡
3
2

¢
(0:55)2(0:45)1| {z }

binomial

£ 0:55

Generalising,

P(X = x) = P(r ¡ 1 successes in x ¡ 1 independent trials and success in the last trial)

=
¡
x¡1
r¡1

¢
pr¡1(1 ¡ p)x¡r £ p

=
¡
x¡1
r¡1

¢
pr(1 ¡ p)x¡r

In repeated independent Bernoulli trials, B(1, p), 0 < p < 1, where p is the probability of success

in each trial, let X denote the number of trials needed to gain r successes.

X has a negative binomial distribution with probability mass function

P(X = x) =
¡
x¡1
r¡1

¢
pr(1 ¡ p)x¡r, r > 1, where x = r, r + 1, r + 2, ....

The CDF is F (x) = P(X 6 x) =
xP

k=r

¡
k¡1
r¡1

¢
pr(1 ¡ p)k¡r where 1 6 r 6 k 6 x.

We write X » NB(r, p) and say X is a negative binomial random variable.

Example 12
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32 STATISTICS AND PROBABILITY

On each point in a badminton set, Dan has probability 0:52 of beating Chong. Suppose

they play one set to 21 points. Find the probability that Dan wins the set 21-19.

Let X be the number of points played until Dan wins.

) X » NB(21, 0:52)

) P(Dan wins 21-19) = P(X = 40)

=
¡
39
20

¢
0:52210:4819

¼ 0:0658

EXERCISE B.2

1 X is a discrete random variable where X » Geo(0:25). Without using technology, calculate:

a P(X = 4) b P(X 6 2) c P(X > 3)

2 Suppose X » Geo(p), 0 < p < 1. Show that the probability distribution is well defined, so
1P
i=1

P(X = i) = 1.

3 In a game of ten-pin bowling, Xu has a 29% chance of getting

a ‘strike’ with every bowl he attempts at all ten pins.

a Find the probability of Xu getting a ‘strike’ after exactly

4 bowls.

b Find the probability that Xu will take 7 bowls to score 3
‘strikes’.

4 Suppose X » Geo(p) and that the probability that the first

success is obtained on the 3rd attempt is 0:023 987.

If p > 0:5, find P(X > 3).

5 In any game of squash, Paul has a 65% chance of beating Eva. To win a match in squash, a player

must win three games.

a State the nature of the distribution in a squash match.

b Find the probability that Eva beats Paul by 3 games to 1.

c Find the probability that Eva beats Paul in a match of squash.

6 From past experience, Fred has a 72% chance of driving a golf ball in excess of 230 m. Find the

probability that:

a Fred needs 5 drives in order to hit one in excess of 230 m.

b Fred needs 12 drives in order to exceed 230 m 4 times.

7 At a luxury ski resort in Switzerland, the probability that snow will fall on any given day in the

snow season is 0:15 .

a If the snow season begins on November 1st, find the probability that the first snow will fall on

November 15.

b Given that no snow fell during November, a tourist decides to wait no longer to book a holiday.

On December 1st, the tourist decides to book for the earliest date for which the probability that

the first snow will have fallen is greater than 0:85 . Find the exact date of the booking.

Example 13

IB HL OPT 2ed
magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-Stat-Prob\IB_HL_OPT-Stat-Prob_01\032IB_HL_OPT-Stat-Prob_01.cdr Friday, 5 April 2013 4:32:39 PM BRIAN



STATISTICS AND PROBABILITY 33

8 In a board game for four players, the players must each roll two fair dice in turn to get a difference

of “no more than 3”, before they can move their marker on the board.

a Find the probability of getting a difference of “no more than 3” when rolling two unbiased

dice.

b Player 1 rolls the dice first. Find the probability that player 1 is the first to move his counter,

and this happens on his second roll.

POISSON

The Poisson distribution was studied in Chapter 25 of the Core text.

X is a Poisson random variable if E(X) = Var(X) = m > 0 and X has

probability mass function P(X = x) =
mxe¡m

x!
, where x = 0, 1, 2, 3, .... .

The CDF of X is F (x) = P(X 6 x) =
xP

k=0

mke¡m

k!
for x = 0, 1, 2, 3, .... .

We write X » Po(m).

We have seen that a binomial random variable is used to describe the number of successes in a certain

number of independent Bernoulli trials.

A Poisson random variable X can be interpreted as the number of successes (or occurrences) in an

interval of given, specific length, when the following conditions hold:

1 The average number E(X) = m, of occurrences is known and is constant for all intervals of the

given, specific length.

2 The number of occurrences in such intervals are independent when the intervals are disjoint.

3 The probability of success in any given trial is small.

Examples of random variables which can be modelled with a Poisson distribution include:

² the number of typing errors per page in a book.

² the number of telephone calls per hour received by an office.

Let X be the number of patients that arrive at a hospital emergency room per hour. Patients arrive

at random and the average number of patients per hour is constant.

a Explain why X is a Poisson random variable.

b Suppose we know that 3Var(X) = [E(X)]2 ¡ 4.

i Find the mean of X. ii Find P(X 6 4).

c Let Y be the number of patients admitted to the hospital Intensive Care Unit each hour.

Suppose it also has a Poisson distribution with Var(Y ) = 3, and that Y is independent of X.

i Find E(X + Y ) and Var(X + Y ).

ii What do you suspect about the distribution of X + Y ?

d Let U be the random variable defined by U = X ¡ Y .

i Find the mean and variance of U . ii Comment on the distribution of U .

Example 14
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34 STATISTICS AND PROBABILITY

a X is a Poisson random variable as the average number of patients arriving at random per hour

is constant. We assume that the numbers of patients arriving each hour are independent.

b i Since E(X) = Var(X) = m, we find 3m = m2 ¡ 4

) m2 ¡ 3m ¡ 4 = 0

) (m ¡ 4)(m + 1) = 0

) m = 4 or ¡1

But m > 0, so m = 4

ii X » Po(4). P(X 6 4) ¼ 0:629

c i E(X + Y )

= E(X) + E(Y )

= 4 + 3 fE(Y ) = Var(Y ) = 3g
= 7

Var(X + Y )

= Var(X) + Var(Y )

= 4 + 3

= 7

ii Since E(X + Y ) = Var(X + Y ), we suspect X + Y is a Poisson random variable,

and that X + Y » Po(7).

d i E(U)

= E(X ¡ Y )

= E(X) ¡ E(Y )

= 4 ¡ 3

= 1

Var(U)

= Var(X ¡ Y )

= Var(X) + Var(Y )

= 4 + 3

= 7

ii Since E(U) 6= Var(U), the variable U = X ¡ Y

cannot be Poisson.

EXERCISE B.3

1 X is a discrete random variable such that X » Po(¹) and P(X = 2) = P(X = 0) + 2P(X = 1).

a Find the value of ¹. b Hence, evaluate P(1 6 X 6 5).

2 Let X be the number of emergency calls made to the police per hour. The calls arrive at random,

and the average number of calls per hour is constant.

a Explain why X is a Poisson random variable.

b Suppose we know that 2Var(X) = [E(X)]2 ¡ 15.

i Find the mean of X. ii Find P(X 6 3).

3 In a mining process, the workers regularly use chains of length 50 metres. It is known that chains

from a particular manufacturer have faults at the average rate of 1 per every kilometre of chain.

a Find the probability that there will be:

i no faults in a 50 metre length of chain

ii at most two faults in the 50 metre length of chain.

b A chain is considered ‘safe’ if there is at least a 99:5% chance there will be no more than

1 fault in 50 m of chain. Should the chains from this manufacturer be considered ‘safe’?

We will prove in the next

exercise that the sum of

two independent Poisson

random variables is itself a

Poisson random variable.
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STATISTICS AND PROBABILITY 35

4 A receptionist in an international school receives

on average five internal calls per 20 minutes and

ten external calls per half hour.

a Calculate the probability that the receptionist will

receive exactly three calls in five minutes.

b On average, how many calls will the receptionist

receive every five minutes? Give your answer to

the nearest integer.

c Find the probability that the receptionist receives

more than five calls in:

i 5 minutes ii 7 minutes.

Consider two independent Poisson random variables X and Y , both with mean m.

Prove that X + Y is a Poisson random variable with mean 2m.

Since X and Y are two Poisson random variables with mean m, P(X = x) =
mxe¡m

x!
and

P(Y = y) =
mye¡m

y!
.

Since X and Y are independent,

P(X = x and Y = y) = P(X = x) £ P(Y = y)

) P(X + Y = k) =
kP

i=0

(P(X = i and Y = k ¡ i))

=
kP

i=0

P(X = i) £ P(Y = k ¡ i)

=
kP

i=0

mie¡m

i!
£ mk¡ie¡m

(k ¡ i)!

=
e¡2m

k!

kP
i=0

k!

i!(k ¡ i)!
mimk¡i

=
e¡2m

k!
(2m)k fBinomial theoremg

) X + Y is a Poisson random variable with mean 2m.

5 a Let X » Po(m1) and Y » Po(m2) be two independent Poisson random variables.

Prove that X + Y has probability mass function

P(X + Y = k) =
(m1 + m2)

ke¡(m1+m2)

k!
, k = 0, 1, 2, ....

and thereby prove that X + Y is a Poisson random variable with distribution Po(m1 +m2).

b Prove by induction that the sum of n independent Poisson random variables X1, X2, ...., Xn,

with corresponding means m1, m2, ...., mn respectively, is a Poisson random variable with

distribution Po(m1 + m2 + :::: + mn).

Example 15
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36 STATISTICS AND PROBABILITY

THE MEAN AND VARIANCE OF DISCRETE RANDOM VARIABLES

We have seen that to calculate the mean and variance of a discrete random variable we use:

Consider X » DU(n) where X = 1, 2, ...., n, which is a special case of a discrete uniform

random variable.

Given that 12 +22 +32 + ::::+n2 =
n(n+ 1)(2n+ 1)

6
for all n in Z +, show that E(X) =

n+ 1

2

and Var(X) =
n2 ¡ 1

12
.

E(X) =
P

xipi

= 1
³
1

n

´
+ 2

³
1

n

´
+ 3

³
1

n

´
+ :::: + n

³
1

n

´
=

1

n
(1 + 2 + 3 + 4 + :::: + n) where 1 + 2 + 3 + :::: + n is an

arithmetic series with u1 = 1 and d = 1

=
1

n

h
n

2
(2u1 + (n ¡ 1)d)

i
= 1

2 [2 + (n ¡ 1)]

=
n+ 1

2

Var(X) =
P

x 2
i pi ¡ ¹2

= 12
³
1

n

´
+ 22

³
1

n

´
+ 32

³
1

n

´
+ :::: + n2

³
1

n

´
¡
³
n+ 1

2

´2
=

1

n
(12 + 22 + 32 + :::: + n2) ¡ (n+ 1)2

4

=
1

n

h
n(n+ 1)(2n+ 1)

6

i
¡ (n+ 1)2

4

=
(n+ 1)(2n+ 1)

6
¡ (n+ 1)2

4

= (n + 1)
h
2n+ 1

6
¡ n+ 1

4

i
= (n + 1)

h
4n+ 2

12
¡ 3n+ 3

12

i
= (n + 1)

h
n¡ 1

12

i
=

n2 ¡ 1

12

Example 16

² the mean E(X) = ¹ =
P

xipi

² the variance Var(X) = ¾2 =
P

(xi ¡ ¹)2pi

=
P

x 2
i pi ¡ ¹2

= E(X2) ¡ fE(X)g2
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STATISTICS AND PROBABILITY 37

For X » DU(n) in general, X takes values x1, x2, ...., xn where P(X = xi) = pi =
1

n

for all i = 1, ...., n. The mean and variance are calculated as:

E(X) =
nP

i=1

xipi =
1

n

nP
i=1

xi

Var(X) =
nP

i=1

x 2
i pi ¡ fE(X)g2

=
1

n

nP
i=1

x 2
i ¡ 1

n2

½
nP

i=1

xi

¾2

.

By similar direct calculation of the mean and variance for discrete distributions, the results in the following

table can be obtained. We will return to them later in the course when we study probability generating

functions.

Distribution Notation
Probability mass

function
Mean Variance

Bernoulli X » B(1, p) px(1 ¡ p)1¡x for x = 0, 1 p p(1 ¡ p)

Binomial X » B(n, p)

¡
n
x

¢
px(1 ¡ p)n¡x

for x = 0, 1, ...., n
np np(1 ¡ p)

Poisson X » Po(m)
mxe¡m

x!
for x = 0, 1, .... m m

Geometric X » Geo(p)
pqx¡1 where q = 1 ¡ p,

for x = 1, 2, ....

1

p

q

p2

Negative binomial

(Pascal’s)
X » NB(r, p)

¡
x¡1
r¡1

¢
prqx¡r where q = 1 ¡ p,

for x = r, r + 1, ....

r

p

rq

p2

Discrete uniform

(special case)
X » DU(n)

1

n
for x = 1, ...., n

n+ 1

2

n2 ¡ 1

12

a Prove that x
¡
n
x

¢
= n

¡
n¡1
x¡1

¢
.

b Hence prove that for a Binomial random variable, the mean is equal to np.

a Proof: LHS = x
¡
n
x

¢
= x £ n!

(n¡ x)!x!

=
n!

(n¡ x)!(x¡ 1)!

) LHS = RHS as required

RHS = n
¡
n¡1
x¡1

¢
= n £ (n¡ 1)!

(n¡ x)!(x¡ 1)!

=
n!

(n¡ x)!(x¡ 1)!

Example 17
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38 STATISTICS AND PROBABILITY

b If X » B(n, p) then P (x) =
¡
n
x

¢
pxqn¡x where q = 1 ¡ p.

) ¹ = E(X) =
nP

x=0

xP (x)

=
nP

x=0

x
¡
n
x

¢
pxqn¡x

=
nP

x=1

x
¡
n
x

¢
pxqn¡x fsince when x = 0, the term is 0g

=
nP

x=1

n
¡
n¡1
x¡1

¢
pxqn¡x fusing the above resultg

= np
nP

x=1

¡
n¡1
x¡1

¢
px¡1qn¡x

= np
n¡1P
r=0

¡
n¡1
r

¢
prqn¡(r+1) freplacing x ¡ 1 by rg

= np
n¡1P
r=0

¡
n¡1
r

¢
prq(n¡1)¡r

= np(p + q)n¡1 fBinomial theoremg
= np £ 1

= np

THE POISSON APPROXIMATION TO THE BINOMIAL DISTRIBUTION

In the following example we observe how, in certain cases, a binomial random variable can be

approximated by a Poisson random variable.

Sheep are transported to the city using big trucks which carry 500 sheep at a time. On average,

0:8% of the sheep have to be removed on arrival because of illness.

a Describe the nature of the random variable X, which indicates the number of ill sheep on

arrival.

b State the mean and variance of X.

c Find the probability that on a truck carrying 500 sheep:

i exactly three are ill on arrival ii at least four are ill on arrival.

d By inspection of your answer to b, comment as to what other type of random variable X may

approximate.

e Use the approximation from d to repeat the calculations in c. Hence verify the validity of the

approximation.

a X is a binomial random variable and X » B(500, 0:008)

b ¹ = np = 500 £ 0:008 = 4 ¾2 = np(1 ¡ p) = 4 £ 0:992 ¼ 3:97

c i P(X = 3) ¼ 0:196 ii P(at least 4 are ill)

= P(X > 4)

= 1 ¡ P(X 6 3)

¼ 0:567

Example 18

IB HL OPT 2ed
magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-Stat-Prob\IB_HL_OPT-Stat-Prob_01\038IB_HL_OPT-Stat-Prob_01.cdr Tuesday, 9 April 2013 10:32:51 AM BRIAN



STATISTICS AND PROBABILITY 39

d Using b, ¹ ¼ ¾2 which suggests we may approximate X using a Poisson distribution.

In particular, X is approximately distributed as Po(4).

e P(X = 3)

¼ 0:195 X

P(X > 4)

= 1 ¡ P(X 6 3)

¼ 0:567 X

These results are excellent

approximations to those in c.

The previous example prompts the question: Under what conditions can a binomial random variable be

approximated by a Poisson random variable?

Let X » B(n, p) be a binomial random variable.

X has probability mass function P (x) = P(X = x) =
¡
n
x

¢
px(1 ¡ p)n¡x where x = 0, 1, 2, ...., n

and E(X) = np.

Suppose np = m, a constant.

) p =
m

n

For m, x fixed constants:

P (x) =
¡
n
x

¢³m

n

´x ³
1 ¡ m

n

´n¡x

=
n(n¡ 1)(n¡ 2) :::: (n¡ x+ 1)

x!

mx

nx

³
1 ¡ m

n

´n¡x

=
mx

x!

n³
n

n

´³
n¡ 1

n

´³
n¡ 2

n

´
::::
³
n¡ x+ 1

n

´o³
1 ¡ m

n

´n¡x

=
mx

x!

n
1
³
1 ¡ 1

n

´³
1 ¡ 2

n

´
::::
³
1 ¡ (x¡ 1)

n

´o³
1 ¡ m

n

´n ³
1 ¡ m

n

´¡x

For a Poisson distribution, the probability p of success in a given trial is small. If we consider p ! 0,

we require n ! 1 in order to keep np = m constant.

)

n
1
³
1 ¡ 1

n

´³
1 ¡ 2

n

´
::::
³
1 ¡ (x¡ 1)

n

´o
! 1,³

1 ¡ m

n

´¡x

! 1,

and
³
1 +

¡m

n

´n
! e¡m frefer to Calculus Optiong

) P (x) ! mxe¡m

x!

Thus the binomial distribution approaches a Poisson distribution when p ! 0 and n ! 1.

For X » B(n, p) a binomial random variable, X can be approximated by the Poisson random

variable Y » Po(np) provided n is large enough and p is small enough. In general, Y is a reasonable

approximation provided n > 50 and p 6 0:1 .

Where appropriate in the following exercise, clearly state the type of discrete distribution used as well

as answering the question.
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40 STATISTICS AND PROBABILITY

EXERCISE B.4

1 Suppose X » Geo(0:333). Find:

a the mean of X b the standard deviation of X.

2 In a game of ten-pin bowling, Win has a 25% chance of a strike in each frame.

a Find the average number of bowls Win requires to get a strike.

b What is the average number of bowls Win will need to get two strikes?

3 A dart player has a 5% chance of hitting the bullseye with every attempt. Find:

a the expected number of throws for this player to get a bullseye

b the standard deviation in throws for this player to get a bullseye.

4 A spinning wheel has the numbers 1 to 40 inclusive on it. Assuming that the wheel is unbiased,

find the mean and standard deviation of all the possible scores when the wheel is spun.

5 In an average working week, an office confectionary dispenser breaks down six times. Assume the

working week is Monday to Saturday, with each day including the same number of working hours.

Which of the following is most likely to occur?

A The machine breaks down three times during the week.

B The machine breaks down once on Saturday.

C The machine breaks down less than seventeen times in a 4 week period.

6 In a World Series contest between the Redsox and the Yankees,

the first team to win four games is declared world champion.

Recent evidence suggests that the Redsox have a 53% chance of

beating the Yankees in any game. Find the probability that:

a the Yankees will beat the Redsox in exactly five games

b the Yankees will beat the Redsox in exactly seven games

c the Redsox will be declared world champions.

d On average, how many games would it take for the Redsox

to win four games against the Yankees? Comment on your

result.

7 During the busiest period on the internet, you have a 62% chance of connecting to a government

website. If you do not get through, you keep trying until you do connect. Let X be the number of

times you have to try in order to get through.

a Stating any necessary assumptions, identify the nature of the random variable X.

b Find P(X > 3).

c Find the mean and standard deviation of the random variable X.

8 A large aeroplane has 250 passenger seats. From years of business experience, the airline has found

that on average 3:75% of travellers who have bought tickets do not arrive for any given flight. The

airline sells 255 tickets for this large aeroplane on a particular flight. Let X be the number of ticket

holders who do not arrive for the flight.

a State the distribution of X.

b Calculate the probability that more than 250 ticket holders will arrive for the flight.

c Calculate the probability that there will be empty seats on this flight.

d For the variable X, calculate the: i mean ii variance.
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STATISTICS AND PROBABILITY 41

e Hence use a suitable approximation for X to calculate the probability that:

i more than 250 ticket holders will arrive for the flight

ii there will be empty seats on this flight.

f Use your answers to determine whether the approximation was a good one.

9 It costs E15 to play a game where you have to randomly select a marble from ten differently marked

marbles in a barrel. The marbles are marked 10 cents, 20 cents, 30 cents, 40 cents, 50 cents,

60 cents, 70 cents, E15, E30, and E100, and you receive the marked amount in return for playing

the game.

a Define a random variable X which is the outcome of selecting a marble from the barrel.

b Find E(X) and Var(X).

c Briefly explain why you cannot use the rules given for DU(n) to find the answers to b above.

d The people who run the game expect to make a profit but want to encourage people to play by

not charging too much.

i Find, to the nearest 10 cents, the smallest amount they need to charge to still expect to

make a profit.

ii Find the expected return to the organisers if they charge E16 per game, and a total of

1000 games are played in one day.

10 A person raising funds for cancer research telephones people at random asking for a donation.

From past experience, he has a 1 in 8 chance of being successful.

a Describe the random variable X that indicates the number of calls made before he is successful

and someone makes a donation. State one assumption made in your answer.

b Find the average number of calls required for success, and the standard deviation of the number

of calls for success.

c Find the probability that it takes less than five calls to be successful.

11 The probability that I dial a wrong number is 0:005 when I make a telephone call. In a typical week

I will make 75 telephone calls.

a Describe the distribution of the random variable T that indicates the number of times I dial a

wrong number in a week.

b In a given week, find the probability that:

i I dial no wrong numbers, P(T = 0)

ii I dial more than two wrong numbers, P(T > 2).

c Find E(T ) and Var(T ). Comment on your results.

d By approximating T with a Poisson distribution, again find the probability that in a given week:

i I dial no wrong numbers ii I dial more than two wrong numbers.

e Discuss your results in b and d.

12 a Consider 1 + q + q2 + q3 + :::: where 0 < q < 1.

i Find the sum to infinity of this series.

ii Hence, show that 1 + 2q + 3q2 + 4q3 + :::: =
1P
x=1

xqx¡1 =
1

(1 ¡ q)2
for 0 < q < 1.

b If X » Geo(p), prove that E(X) =
1

p
.
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42 STATISTICS AND PROBABILITY

In this section we present important examples of continuous random variables and examine their

cumulative distribution functions (CDF). Refer to Chapter 26 of the Core text to revise the properties

of continuous random variables.

In Section A we saw that a continuous random variable X with probability distribution function f(x)

with domain [a, b], has cumulative distribution function F (x), where

F (x) = P(X 6 x)

=

Z x

a

f(t) dt

= area under the curve y = f(t)
between t = a and t = x.

Depending on the form of the function f(t), this area can sometimes be found using simple methods, for

example, by finding the area of a triangle or rectangle.

The continuous random variable X has PDF f(x) = kx, 0 6 x 6 6,

where k is a constant.

Find: a k b the tenth percentile of the random variable X.

a Since

Z 6

0

f(x) dx = 1,Z 6

0

kxdx = 1

) k

·
x2

2

¸ 6
0

= 1

) k(18 ¡ 0) = 1

) k = 1
18

b We need to find c such that P(X < c) = 0:10

) 1
2 £ c £ c

18
= 0:1 fThe area of the shaded triangleg

) c2 = 3:6

) c ¼ 1:90 fas c > 0g
The 10th percentile ¼ 1:90

THE MEAN AND VARIANCE OF A CONTINUOUS RANDOM VARIABLE

From Section A we have the following formulae for calculating the mean and variance of a continuous

random variable X:

² E(X) = ¹ =

Z
xf(x)dx

² Var(X) = ¾2 =

Z
(x¡ ¹)2f(x)dx = E((X ¡ ¹)2)

=

Z
x2f(x)dx¡ ¹2 = E(X2) ¡ ¹2

CONTINUOUS RANDOM VARIABLESC

Example 19

y

x

f(x) = kx

c 6

We could use the area

of a triangle formula

instead of integrating.

y

t

Area = F(x)
y = f(t)

a x b
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STATISTICS AND PROBABILITY 43

CONTINUOUS UNIFORM

A continuous uniform random variable X has:

² domain [a, b], where a, b are constants. The possible values for X are all x such that a 6 x 6 b.

² PDF f(x) =
1

b¡ a
for a 6 x 6 b.

Its graph a horizontal line segment as shown.

² CDF F (x) = P(X 6 x) =

Z x

a

f(t) dt

=

Z x

a

1

b¡ a
dt

=
x¡ a

b¡ a

= the area of the rectangle shown.

We write X » U(a, b).

If X » U(a, b) is a continuous uniform random variable, show that:

a ¹ =
a+ b

2
b Var(X) =

(b¡ a)2

12

Since X » U(a, b), its PDF is f(x) =
1

b¡ a
, a 6 x 6 b.

a ¹ = E(X)

=

Z b

a

x

b¡ a
dx

=
1

b¡ a

·
x2

2

¸ b
a

=

b2

2
¡ a2

2

b¡ a

=
b2 ¡ a2

2(b¡ a)

=
(b+ a)(b¡ a)

2(b¡ a)

=
a+ b

2

b ¾2 = Var(X) = E(X2) ¡ ¹2

=

Z b

a

x2

b¡ a
dx ¡

³
a+ b

2

´2
=

1

b¡ a

·
x3

3

¸ b
a

¡
³
a+ b

2

´2
=

b3

3
¡ a3

3

b¡ a
¡
³
a+ b

2

´2
=

b3 ¡ a3

3(b¡ a)
¡
³
a+ b

2

´2
=

(b¡ a)(b2 + ab+ a2)

3(b¡ a)
¡ a2 + 2ab+ b2

4

=
4b2 + 4ab+ 4a2

12
¡ 3a2 + 6ab+ 3b2

12

=
b2 ¡ 2ab+ a2

12

=
(b¡ a)2

12

Example 20

y

x

1

b¡ a

f(x) =
1

b¡ a

a b

y

t

1

b¡ a

f(x) =
1

b¡ a

a x b

Area = F(x)
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44 STATISTICS AND PROBABILITY

The error, in seconds, made by an amateur timekeeper at an athletics meeting may be modelled by

the random variable X with probability density function

f(x) =

½
2:5 ¡0:1 6 x 6 0:3

0 otherwise.

Find the probability that:

a an error is positive b the magnitude of an error exceeds 0:1 seconds

c the magnitude of an error is less than 0:2 seconds.

We have X » U(¡0:1, 0:3) with PDF f(x) = 2:5 on ¡0:1 6 x 6 0:3 .

a P(X > 0)

= P(0 < X < 0:3)

= 0:3 £ 2:5 fArea of the given rectangleg
= 0:75

b P(magnitude > 0:1)

= P(jXj > 0:1)

= P(X > 0:1 or X < ¡0:1)

= P(X > 0:1)

= 0:2 £ 2:5 fArea of rectangleg
= 0:5

c P(magnitude < 0:2) = P(jXj < 0:2)

= P(¡0:2 < X < 0:2)

= P(¡0:1 < X < 0:2)

= (0:2 ¡ (¡0:1)) £ 2:5

= 0:75

EXPONENTIAL

A continuous exponential random variable X has:

² domain [ 0, 1 [ . The possible values for X are all x > 0.

² PDF f(x) = ¸e¡¸x for x > 0, where ¸ > 0 is a constant.

² CDF F (x) = P(X 6 x) =

Z x

0

¸e¡¸t dt

=
£¡e¡¸t

¤ x
0

= 1 ¡ e¡¸x.

We write X » Exp(¸).

Example 21

y

x

f(x) = ¸e¡¸x

¸

y

x
-0 1. 0 3.

2 5.

0 1.

y = f(x)

y

x
-0 1. 0 3.

2 5.

0 2.

y = f(x)

y

x
-0 1. 0 3.

2 5. y = f(x)
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STATISTICS AND PROBABILITY 45

We note that:

² ¸ > 0 is required since f(x) > 0 is necessary and e¡¸x > 0 for all x.

² f(x) is decreasing for all x > 0. This is observed from the graph y = f(x) or algebraically since

f 0(x) = ¡¸2e¡¸x < 0 for all x > 0.

² Since f(x) is a PDF,

Z 1

0

f(x) dx = 1. Hence

Z 1

0

¸e¡¸t dt = 1.

² From the graph of y = f(x) we observe that as x ! 1, f(x) ! 0 from above.

² Most of the area under the graph of y = f(x) corresponds to low values of x.

Theorem 10

For a continuous exponential random variable, X » Exp(¸), E(X) =
1

¸
and Var(X) =

1

¸2
.

We will prove this theorem in Exercise C, question 10.

The continuous random variable X has probability density function f(x) = 2e¡2x, x > 0.

a Show that f(x) is a well-defined PDF. b Find E(X) and Var(X).

c Find the median and modal values of X.

a Now

Z 1

0

f(x) dx =

Z 1

0

2e¡2x dx

= lim
t!1

·
2e¡2x

¡2

¸ t
0

= lim
t!1

£¡e¡2x
¤ t
0

= lim
t!1

¡
1 ¡ e¡2t

¢
= 1 ¡ 0
= 1

and f(x) = 2e¡2x > 0

since e¡2x > 0 for all x 2 [ 0, 1 [ .

) f(x) is a well-defined PDF.

b Since X » Exp(2), E(X) =
1

¸
= 1

2 and Var(X) =
1

¸2
= 1

4 .

c If the median is m, we need to find m such that

Z m

0

2e¡2x dx = 0:5

)

h³
1

¡2

´
2e¡2x

im
0

= 0:5

)
£¡e¡2x

¤m
0

= 0:5

) ¡e¡2m ¡ (¡1) = 0:5

) e¡2m = 0:5

) e2m = 2 freciprocalsg
) 2m = ln 2

) m = 1
2 ln 2 ¼ 0:347

) the median ¼ 0:347

The mode is the value of x which gives the maximum value of f(x),

) the mode = 0.

Example 22

y

x

2 y = f(x)
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46 STATISTICS AND PROBABILITY

a Find the 80th percentile of the continuous exponential random variable X with PDF

f(x) = ¸e¡¸x, x > 0, giving your answer in terms of ¸.

b If ¸ > 4, find possible values for the 80th percentile. Comment on your answer.

a We need to find c such thatZ c

0

¸e¡¸t dt = 0:80

) ¸

Z c

0

e¡¸t dt = 0:8

) ¸

·
e¡¸t

¡¸

¸ c
0

= 0:8

) ¡ £e¡¸c ¡ e0
¤

= 0:8

) e¡¸c ¡ 1 = ¡0:8

) e¡¸c = 0:2

) e¸c = 5

) ¸c = ln5

) c =
ln 5

¸

) the 80th percentile is
ln 5

¸
.

b If ¸ > 4,
1

¸
<

1

4

) the 80th percentile <
ln 5

4
¼ 0:402

So, for ¸ > 4, 80% of the scores are

less than 0:402 .

80% of the area under the curve lies in

[0, 0:402], which is a very small interval

compared with [ 0, 1 [.

Suppose we are given the CDF of a continuous random variable. We can find its PDF using the

Fundamental Theorem of Calculus, since the PDF f(x) will also be a continuous function. In particular:

If the CDF is F (x) =

Z x

a

f(t) dt then its PDF is given by f(x) = F 0(x).

Find the PDF of the random variable with CDF F (x) =

Z x

0

¸e¡¸t dt.

f(x) = F 0(x) =
d

dx

Z x

0

¸e¡¸t dt, x > 0

=
d

dx

·
¸e¡¸t

¡¸

¸ x
0

=
d

dx

£¡e¡¸t
¤ x
0

=
d

dx
(¡e¡¸x ¡ (¡1))

= ¡e¡¸x(¡¸) + 0

) the PDF is f(x) = ¸e¡¸x, x > 0

Example 24

Example 23

y

x

4 y = f(x)

80%

0 402.

As expected from the Fundamental

Theorem of Calculus, is simply

the integrand function.

f x( )
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STATISTICS AND PROBABILITY 47

NORMAL

A continuous normal random variable X has:

² domain R , so X may take any real value x 2 R .

² PDF f(x) =
1

¾
p
2¼

e
¡ 1

2

¡
x¡¹

¾

¢2
for x 2 R ,

where ¹, ¾ are constants and ¾ > 0.

² CDF F (x) = P(X 6 x)

=

Z x

¡1
f(t) dt

= area under y = f(t) on ] ¡1, x ].

We write X » N(¹, ¾2).

We note that:

² X has mean E(X) = ¹ and variance Var(X) = ¾2.

² The normal curve is bell-shaped with the percentages within its portions as shown. Refer to the

Core text Chapter 26 for more information.

² Z =
X ¡ ¹

¾
is the standard normal random variable, and Z » N(0, 1)

This transformation is useful when determining an unknown mean or standard deviation. Conversion

to Z-scores is also very important for understanding the theory behind confidence intervals and

hypothesis testing which are dealt with later in this topic.

SUMMARY OF CONTINUOUS DISTRIBUTIONS

Distribution Notation Probability density function Mean Variance

Uniform X » U(a, b)
1

b¡ a
, a 6 x 6 b

a+ b

2

(b¡ a)2

12

Exponential X » Exp(¸) ¸e¡¸x, x > 0
1

¸

1

¸2

Normal X » N(¹, ¾2)
1

¾
p
2¼

e
¡ 1

2

¡
x¡¹

¾

¢2
¹ ¾2

34 13. % 34 13. %

13 59. % 13 59. %

2 15. %0 13. % 0 13. %2 15. %

¹ ¾-3 ¹ ¾-2 ¹ ¾- ¹ ¾+ ¹ ¾+3¹ ¾+2¹

X

y = f(x)

¹¹ - ¾ ¹ + ¾

t

y = f(t)

x

Area = F(x)

X
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48 STATISTICS AND PROBABILITY

Consider the random variable X » N(¹, ¾2).

Find the mean and standard deviation given that

area A = 0:115 06 and area B = 0:135 66 .

P(X < 13) = 0:115 06

) P
³
X ¡ ¹

¾
<

13¡ ¹

¾

´
= 0:115 06

) P
³
Z <

13¡ ¹

¾

´
= 0:115 06

)
13¡ ¹

¾
¼ ¡1:2

) ¹ ¡ 1:2¾ = 13 .... (1)

Also, P(X > 36) = 0:135 66

) P
³
Z >

36¡ ¹

¾

´
= 0:135 66

)
36¡ ¹

¾
¼ 1:1

) ¹ + 1:1¾ = 36 .... (2)

(2) ¡ (1) gives 2:3¾ = 23

) ¾ = 10

Substituting in (1) gives ¹ ¡ 12 = 13

) ¹ = 25

) the mean is 25 and the standard deviation is 10.

THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

Suppose X » B(n, p) is a binomial random variable. For sufficiently

large n, we can approximate X (discrete) by Xc (continuous) where

Xc » N(np, npq) and q = 1 ¡ p.

A useful rule to follow is: If np > 5 and nq > 5, then any value of

Xc is a reasonable approximation for a value of X, provided we allow

for a correction of continuity (see below).

This can be observed by drawing column

graphs for binomial distributions for

different values of n and p. When n, p,

and q satisfy the above, the column graph

has an approximate bell-shape like the

PDF of a normal distribution. The greater

the values of np and nq, the closer this

approximates the graph of the normal

distribution.

Example 25

continuous normal random

distribution

binomial distribution

with large n.

We will prove this result

later in the topic.

X
13 36

Area = A Area = B

¹
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STATISTICS AND PROBABILITY 49

CORRECTION FOR CONTINUITY

For Xc a continuous random variable, P(Xc = a) = 0 for a any constant, but for a an integer we

define P(Xc = a) = P(a ¡ 0:5 6 Xc < a + 0:5), due to rounding on the real number line.

Thus when approximating the discrete binomial random variable X » B(n, p) with the continuous

normal random variable Xc » N(np, np(1¡p)) we approximate P(X = 7)

discrete

with P(6:5 6 Xc < 7:5).

continuous

Also, for X 6 7 we use Xc < 7:5, and for X > 7 we use Xc > 6:5 .

This is called a correction for continuity.

Consider the binomial random variable X » B(15, 0:4).

a Find: i E(X) ii Var(X).

b Find: i P(X 6 7) ii P(3 6 X 6 12).

c Approximate X with an appropriate continuous normal random variable Xc.

d Find: i P(Xc 6 7) ii P(3 6 Xc 6 12).

Compare your answers with b.

e Find: i P(Xc < 7:5) ii P(2:5 6 Xc < 12:5).

Again, compare your answers with b.

f Which of the approximations c or d are better? Explain your answer.

a i E(X) = ¹ = np

) E(X) = 15 £ 0:4

= 6

ii Var(X) = ¾2 = npq

) Var(X) = 6 £ 0:6

= 3:6

b i P(X 6 7) ¼ 0:787 ii P(3 6 X 6 12)

= P(X 6 12) ¡ P(X 6 2)

¼ 0:973

c Using a normal approximation, X is approximately distributed by Xc » N(6, 3:6).

d i P(Xc 6 7) ¼ 0:701 ii P(3 6 Xc 6 12) ¼ 0:942

These answers are not really close to those in b.

e Using the normal approximation Xc » N(6, 3:6)

i P(Xc < 7:5) ¼ 0:785 ii P(2:5 6 Xc < 12:5) ¼ 0:967

These results are very close to the actual values.

f The approximations in e are much closer. There has been a correction for continuity because

the binomial distribution is discrete and the normal distribution is continuous.

Example 26
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50 STATISTICS AND PROBABILITY

EXERCISE C

Where appropriate in the following exercise, clearly state the type of discrete or continuous distribution

used as well as answering the question.

1 The continuous random variable T has the probability density function

f(t) =

½
1
2¼ ¡¼ 6 t 6 ¼

0 otherwise.
Find the mean and standard deviation of T .

2 The Australian football Grand Final is held annually on the last Saturday in September. With

approximately 100 000 in attendance each year, ticket sales are heavily in demand upon release.

Let X be the random variable which gives the time (in hours) required for a successful purchase of

a Grand Final ticket after their release. The median value of X is 10 hours.

a Give reasons why X could best be modelled by a continuous exponential random variable.

b Find the value of ¸ in the PDF for the exponential random variable X.

c Hence, find the probability of a Grand Final ticket being purchased after 3 or more days.

d Find the average time before a Grand Final ticket is purchased.

3 Find the mean and standard deviation of a normal random variable X, given that

P(X > 13) = 0:4529 and P(X > 28) = 0:1573.

4 Consider the continuous probability density function f(x) =

8<:
0, x < 0

6 ¡ 18x, 0 6 x 6 k

0, x > k.

Find:

a the value of k b the mean and standard deviation of the distribution.

5 It is known that 41% of a population support the Environment Party. A random sample of 180 people

is selected from the population. Suppose X is the random variable giving the number in the sample

who support the Environment Party.

a State the distribution of X. b Find E(X) and Var(X). c Find P(X > 58).

d State a suitable approximation for the random variable X and use it to recalculate c.

Comment on your answer.

6 When typing a document, trainee typists make on average 2:5 mistakes per page. The mistakes

on any one page are made independently of any other page. Suppose X represents the number of

mistakes made on one page, and Y represents the number of mistakes made in a 52-page document.

a State the distributions of X and Y . You may assume that the sum of n independent Poisson

random variables, each with mean m, is itself a Poisson random variable with mean mn.

b Rana is a trainee typist. Find the probability that Rana will make:

i more than 2 mistakes on a randomly chosen page

ii more than 104 mistakes in a 52-page document.

c Now assume that X and Y can be approximated by normal random variables with the

same means and variances as found above. Use the normal approximations to estimate the

probabilities in b. Comment on your answers.

7 The continuous random variable X has PDF f(x) = 2
5 where 1 6 x 6 k.

a Find the value of k, and state the distribution of X.

b Find P(1:7 6 X 6 3:2). c Find E(X) and Var(X).
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STATISTICS AND PROBABILITY 51

8 The continuous random variable X is uniformly distributed over the interval a < x < b.
The 30th percentile is 3 and the 90th percentile is 12. Find:

a the values of a and b b the PDF of X

c P(5 < X < 9) d the CDF of X.

9 a If the random variable T » N(7, 36), find P(jT ¡ 6j < 2:3).

b Four random observations of T are made. Find the probability that exactly two of the

observations will lie in the interval jT ¡ 6j < 2:3 .

10 A continuous random variable X has PDF f(x) = 1
2e

¡ 1

2
x

for x > 0.

a Show that X » Exp(0:5).

b Hence find:

i ¹X ii ¾X iii the median of X iv the 90th percentile of X.

c Use the CDF for the exponential variable to find, correct to 4 decimal places:

i P(X 6 1) ii P(0:4 6 X 6 2)

11

a On the same set of axes, graph y = f(x) for a = 1, 2, and 3.

b Prove that f(x) is a well defined PDF.

c Use integration by parts to show that:

i

Z
axe¡ax dx = ¡e¡ax

µ
x +

1

a

¶
+ constant

ii

Z
ax2e¡ax dx = ¡e¡ax

µ
x2 +

2x

a
+

2

a2

¶
+ constant

Here we prove

.Theorem 10

d Show that the mean and variance of the negative exponential variable X are
1

a
and

1

a2

respectively.

The exponential probability density function of random variable X

is defined as f(x) = ae¡ax for a > 0 and x 2 [0, 1[ .
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52 STATISTICS AND PROBABILITY

In this section we consider discrete random variables which take values in N = f0, 1, 2, ....g.

First we state some key results required for this section:

1 Finite geometric series (GS)

For x 2 R , x 6= 1, and n 2 N ,
nP

i=0

xi = 1 + x + x2 + :::: + xn =
1¡ xn+1

1¡ x
.

2 Sum of an infinite geometric series (GS)

The infinite sum
1P
i=0

xi = 1 + x + x2 + x3 + :::: is finite (or convergent) if and only if jxj < 1.

1P
i=0

xi =
1

1¡ x
if and only if jxj < 1.

3 Binomial formula

For real constants x, y and for n 2 N :

(x + y)n =
nP

i=0

¡
n
i

¢
xiyn¡i = yn +

¡
n
1

¢
xyn¡1 +

¡
n
2

¢
x2yn¡2 + :::: +

¡
n

n¡1

¢
xn¡1y + xn

4 Exponential series

ex =
1P
k=0

xk

k!
= 1 + x +

x2

2!
+

x3

3!
+ :::: for all x 2 R fResult from the Calculus Optiong

5 lim
n!1

³
1 +

a

n

´n
= ea for all a 2 R fResult from HL Coreg

6 Binomial series for r 2 Z + and jxj < 1

1

(1¡ x)r
=

1P
i=0

xi(¡1)i
(¡r)(¡r ¡ 1) :::: (¡r ¡ (i¡ 1))

i!
fResult from the Calculus Optiong

7 Summation identities
nP

i=1

i = 1 + 2 + 3 + :::: + n =
n(n+ 1)

2

nP
i=1

i2 = 12 + 22 + 32 + :::: + n2 =
n(n+ 1)(2n+ 1)

6

PROBABILITY GENERATING FUNCTIONS

Let X be a discrete random variable which takes values in N = f0, 1, 2, 3, ....g, and such that

P(X = k) = pk, for k 2 N .

The probability generating function (PGF), G(t), for X is

G(t) = E(tX) =
1P
k=0

pkt
k

= p0 + p1t + p2t
2 + :::: for all values of t for which G(t) is finite.

PROBABILITY GENERATING FUNCTIONSD
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STATISTICS AND PROBABILITY 53

We note that:

² 0 6 pk 6 1 and
1P
k=0

pk = 1 by the definition of the (well-defined) probability mass function for

a discrete random variable X.

² The PGF G(t) is either a finite series or an infinite series.

I If G(t) is a finite series then G(t) is defined for all t 2 R .

I If G(t) is an infinite series, then it is a power series and is therefore finite (or convergent) only

for t in the interval of convergence of the power series.

² A PGF G(t) defines a discrete random variable X (and its probability distribution) uniquely.

Conversely, if X is a discrete random variable which takes values in N , then its PGF G(t) is

unique.

a Let X be the discrete random variable which takes values 1, 2, 3, and 6, each with

probability 1
4 . Find the PGF for X.

b Let X » B
¡
1, 1

6

¢
be the Bernoulli random variable equal to the number of ‘6’s obtained

when an unbiased 6-sided die is rolled once. Find the PGF for X.

c Let X » Geo
¡
1
6

¢
be the geometric random variable equal to the number of rolls of an

unbiased 6-sided die required to roll a ‘6’. Find the PGF for X.

a G(t) = p1t
1 + p2t

2 + p3t
3 + p6t

6 = 1
4(t + t2 + t3 + t6)

Since G(t) is a finite series, G(t) is finite and therefore defined for all t 2 R .

b P(X = 0) = p0 = 5
6

P(X = 1) = p1 = 1
6

P(X = k) = 0 for integers k > 2.

) the PGF for X is G(t) = p0 + p1t + p2t
2 + ::::

= 5
6 + 1

6 t for t 2 R .

c X takes values 1, 2, 3, .... and P(X = k) = 1
6

¡
1 ¡ 1

6

¢k¡1
for k = 1, 2, 3, ....

= 1
6

¡
5
6

¢k¡1

) the PGF for X is G(t) =
1P
k=1

1
6

¡
5
6

¢k¡1
tk

=
t

6

1P
k=1

³
5t

6

´k¡1

=
t

6

1P
i=0

³
5t

6

´i
fInfinite GSg

=
t

6
£ 1

1¡ 5t
6

if and only if

¯̄̄
5t

6

¯̄̄
< 1

=
t

6

³
6

6¡ 5t

´
if and only if jtj < 6

5

=
t

6¡ 5t
for t 2 ] ¡6

5 , 6
5 [ .

Example 27
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54 STATISTICS AND PROBABILITY

a Let X be the discrete random variable equal to the outcome of rolling an unbiased 4-sided

(tetrahedral) die labelled 1, 2, 3, 4.

i Show that X » DU(4). ii Find the PGF for X.

b Derive the PGF for the discrete uniform random variable X » DU(n) which takes the values

x = 1, 2, ...., n.

a i X has probability distribution: x 1 2 3 4

P(X = x) 1
4

1
4

1
4

1
4

) X » DU(4)

ii G(t) = p0 + p1t + p2t
2 + ::::

= p1t
1 + p2t

2 + p3t
3 + p4t

4

= 1
4(t + t2 + t3 + t4)

=
t

4
(1 + t + t2 + t3) fFinite GSg

=
t

4

(t4 ¡ 1)

(t¡ 1)
, t 2 R

b Suppose X » DU(n), n 2 Z +.

) P(X = x) = px =
1

n
for x = 1, 2, 3, ...., n.

) G(t) = p0 + p1t + p2t
2 + ::::

= p1t
1 + p2t

2 + :::: + pnt
n

=
1

n
(t + t2 + :::: + tn)

=
t

n
(1 + t + t2 + :::: + tn¡1) fFinite GSg

=
t

n

(tn ¡ 1)

(t¡ 1)
, t 2 R .

EXERCISE D.1

1 Find the probability generating function for the discrete random variable X which takes values:

a 1, 2, or 3, each with probability 1
3 .

b 1, 2, or 5, each with probability 1
3 .

c 1, 2, 7, or 12 with probabilities 2
11 , 3

11 , 5
11 , and 1

11 respectively.

2 Let X be the discrete random variable equal to the outcome of spinning

the regular pentagonal spinner shown.

a Find the probability distribution of X.

b Find the PGF for X.

Example 28

3

3

2

2

1
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STATISTICS AND PROBABILITY 55

3 Let X » B(3, 2
5 ) be a binomial random variable.

a Find the probability distribution of X. b Find the PGF for X.

4 Let X » B(1, p) be a Bernoulli random variable.

a Show that G(t) = 1 ¡ p + pt. b Hence find the PGF for X » B(1, 0:4).

5 a Find the PGF G(t) for the random variable X equal to the number of heads obtained when

tossing a fair coin once.

b Find the PGF H(t) for the random variable Y equal to the number of heads obtained when

tossing a fair coin twice.

c Verify that H(t) = (G(t))2.

6 Let X be the random variable equal to the number of ‘6’s obtained when an unbiased 6-sided die is

rolled four times.

a Find the PGF H(t) for X » B
¡
4, 1

6

¢
.

b Verify that H(t) = (G(t))4, where G(t) = 5
6 + 1

6 t is the PGF found in Example 27, part b.

7 a Let X » DU(6) be the random variable which has values x = 1, 2, 3, 4, 5, 6.

Find the PGF G(t) for X.

b Let Y » DU(4) be the random variable which takes values y = 1, 2, 3, 4.

Find the PGF H(t) for Y .

c Let U be the random variable equal to the sum of values when an unbiased 6-sided die (labelled

1, 2, 3, 4, 5, 6) and a tetrahedral die (labelled 1, 2, 3, 4) are rolled.

i Find the probability distribution of U . ii Find the PGF K(t) of U .

d Verify that K(t) = G(t)H(t).

8 Let X be the random variable equal to the number of rolls required to roll a ‘4’ when a tetrahedral

die labelled 1, 2, 3, 4 is rolled.

a Show that X » Geo
¡
1
4

¢
.

b Find:

i P(X = 1) = p1 ii P(X = 2) = p2 iii P(X = k) = pk

c Find the PGF G(t) for X in simplest form, and state the domain of G(t).

PROBABILITY GENERATING FUNCTIONS FOR IMPORTANT DISTRIBUTIONS

In Example 28 we found that for X » DU(n), n 2 Z +, which takes values k = 1, 2, ...., n, the

PGF for X is G(t) =
1

n
(t + t2 + :::: + tn)

=
t

n

(tn ¡ 1)

(t¡ 1)
for all t 2 R .

IB HL OPT 2ed
magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-Stat-Prob\IB_HL_OPT-Stat-Prob_01\055IB_HL_OPT-Stat-Prob_01.cdr Monday, 8 April 2013 12:31:46 PM BRIAN



56 STATISTICS AND PROBABILITY

The PGFs for the important distributions we study in this course are summarised in the following table:

Distribution Notation
Probability mass

function P (x)

Discrete uniform X » DU(n)
1

n
for x = 1, 2, 3, ...., n

t

n

(tn ¡ 1)

t¡ 1
, t 2 R

Bernoulli
X » B(1, p),

0 < p < 1

px(1 ¡ p)1¡x

for x = 0, 1
1 ¡ p + pt, t 2 R

Poisson X » Po(m)

mxe¡m

x!
for

x = 0, 1, 2, ....
em(t¡1), t 2 R

Binomial
X » B(n, p),

0 < p < 1

¡
n
x

¢
px(1 ¡ p)n¡x for

x = 0, 1, 2, 3, ...., n
(1 ¡ p + pt)n, t 2 R

Geometric
X » Geo(p),

0 < p < 1

p(1 ¡ p)x¡1 for

x = 1, 2, 3, 4, ....

pt

1¡ t(1¡ p)
, jtj < 1

1¡ p

Negative binomial
X » NB(r, p),

r 2 Z +, 0 < p < 1

¡
x¡1
r¡1

¢
pr(1 ¡ p)x¡r

µ
pt

1¡ t(1¡ p)

¶r

, jtj < 1

1¡ p

Let X » Geo(p), 0 < p < 1 be a geometric random variable which takes values

x = 1, 2, 3, .... with probabilities P(X = x) = p(1 ¡ p)x¡1.

Prove that the PGF of X is G(t) =
pt

1¡ t(1¡ p)
for jtj < 1

1¡ p
.

G(t) =
1P
x=1

P(X = x)tx

=
1P
x=1

p(1 ¡ p)x¡1tx

=
p

1¡ p

1P
x=1

[t(1 ¡ p)]x which is a GS with u1 = t(1 ¡ p)

and r = t(1 ¡ p)

=
p

1¡ p
£ t(1¡ p)

1¡ t(1¡ p)
provided jt(1 ¡ p)j < 1

=
pt

1¡ t(1¡ p)
provided jtj < 1

1¡ p

Example 29

Probability generating

function G(t)
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STATISTICS AND PROBABILITY 57

Let X » NB(r, p), r 2 Z +, 0 < p < 1 be a negative binomial random variable which takes

values x = r, r + 1, r + 2, .... with probabilities P(X = x) =
¡
x¡1
r¡1

¢
pr(1 ¡ p)x¡r.

Given that
1P
i=0

¡
r¡1+i

i

¢
[t(1 ¡ p)]i =

1

(1¡ t(1¡ p))r
provided jt(1 ¡ p)j < 1, find the PGF

for X.

The PGF for X is

G(t) =
1P
x=r

P(X = x)tx

=
1P
x=r

¡
x¡1
r¡1

¢
pr(1 ¡ p)x¡rtx

= (pt)r
1P
x=r

¡
x¡1
r¡1

¢
(1 ¡ p)x¡rtx¡r

= (pt)r
1P
i=0

¡
r¡1+i
r¡1

¢
(1 ¡ p)iti fletting i = x ¡ rg

= (pt)r
1P
i=0

¡
r¡1+i

i

¢
[t(1 ¡ p)]i fsince

¡
r¡1+i
r¡1

¢
=
¡
r¡1+i

i

¢ g

= (pt)r
1

(1¡ t(1¡ p))r
provided jt(1 ¡ p)j < 1 fgiven resultg

=

·
pt

1¡ t(1¡ p)

¸ r
provided jtj < 1

1¡ p

EXERCISE D.2

1 Let X » B(1, p), 0 < p < 1, be a Bernoulli random variable. Show that the PGF for X is

G(t) = 1 ¡ p + pt.

2 Let X » Po(m), m > 0 be a Poisson random variable which takes values k = 0, 1, 2, 3, .... .

Given that P(X = k) =
mke¡m

k!
, prove that the PGF for X is G(t) = em(t¡1) for all t 2 R .

3 Let X » B(n, p), n 2 Z +, 0 < p < 1, be a binomial random variable.

Given that P(X = x) =
¡
n
x

¢
px(1 ¡ p)n¡x, prove that the PGF of X is G(t) = (1 ¡ p + pt)n.

4 State the PGF for X if:

a X » Po(6) b X » B(10, 0:35) c X » Geo(0:7) d X » NB(6, 0:2)

5 Consider a binomial random variable with mean ¹ = np.

a Show that the variable has PGF G(t) =
³
1 +

¹(t¡ 1)

n

´n
.

b What happens to the PGF in a for large n? Explain the significance of this result.

Example 30
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58 STATISTICS AND PROBABILITY

MEAN AND VARIANCE

Theorem 11

Let X be a discrete random variable with values in N and with PGF G(t) = p0 + p1t + p2t
2 + :::: .

Then: 1 G(1) = 1

2 E(X) = G0(1)

3 G00(1) = E(X(X ¡ 1)) = E(X2) ¡ E(X)

4 Var(X) = G00(1) + G0(1) ¡ [G0(1)]
2

Proof:

1 G(1) = p0 + p1 + p2 + :::: =
P

pi = 1 by definition of the probability mass function for X.

2 G(t) =
1P
k=0

pkt
k

) G0(t) =
1P
k=0

kpkt
k¡1

) G0(1) =
1P
k=0

kpk

=
1P
k=0

k P(X = k)

= E(X) by definition of E(X).

3 G00(t) =
1P
k=0

k(k ¡ 1)pkt
k¡2

) G00(1) =
1P
k=0

k(k ¡ 1)pk

=
1P
k=0

k(k ¡ 1) P(X = k)

= E(X(X ¡ 1)) fby Theorem 2 with g(X) = X(X ¡ 1)g
= E(X2 ¡ X)

= E(X2) ¡ E(X) fby Corollary to Theorem 2g
4 Var(X) = E(X2) ¡ fE(X)g2 fTheorem 3g

= E(X2) ¡ E(X) + E(X) ¡ fE(X)g2
= G00(1) + G0(1) ¡ fG0(1)g2
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STATISTICS AND PROBABILITY 59

Let X » DU(n) with values 1, 2, ...., n. X has PGF G(t) =
1

n
(t + t2 + :::: + tn).

Use G(t) and differentiation rules to prove that E(X) =
n+ 1

2
and Var(X) =

n2 ¡ 1

12
.

G(t) =
1

n
(t + t2 + :::: + tn)

G0(t) =
1

n
(1 + 2t + 3t2 + :::: + ntn¡1)

) G0(1) =
1

n
(1 + 2 + 3 + :::: + n)

=
1

n

³
n (n+ 1)

2

´
=

n+ 1

2

) E(X) = G0(t) =
n+ 1

2

G00(t) =
1

n
(2 + 3 £ 2t + 4 £ 3t2 + :::: + n(n ¡ 1)tn¡2)

) G00(1) =
1

n
(2 + 6 + 12 + :::: + n(n ¡ 1))

=
1

n

½
n¡1P
i=1

i(i + 1)

¾
=

1

n

½
n¡1P
i=1

i2 +
n¡1P
i=1

i

¾
=

1

n

n
n(n¡ 1)(2n¡ 1)

6
+

n(n¡ 1)

2

o
fwell known summation identitiesg

=
n(n¡ 1)

n

n
2n¡ 1

6
+

1

2

o
= (n ¡ 1)

n
2n+ 2

6

o
=

(n¡ 1)(n+ 1)

3

) Var(X) = G00(1) + G0(1) ¡ fG0(1)g2

=
(n¡ 1)(n+ 1)

3
+

n+ 1

2
¡ (n+ 1)2

4

=
(n+ 1)(4(n¡ 1) + 6¡ 3(n+ 1))

12

=
(n+ 1)(n¡ 1)

12

=
n2 ¡ 1

12

Example 31
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60 STATISTICS AND PROBABILITY

The mean and variance for some important discrete random variables are summarised below:

Distribution E(X) Var(X)

X » DU(n) with values 1, 2, ...., n
n+ 1

2

n2 ¡ 1

12

Binomial X » B(n, p) with values 0, 1, 2, ...., n np np(1 ¡ p)

Geometric X » Geo(p) with values 1, 2, 3, ....
1

p

1¡ p

p2

Poisson X » Po(m) with values 0, 1, 2, .... m m

Negative binomial X » NB(r, p) with values r, r + 1, r + 2, ....
r

p

r(1¡ p)

p2

EXERCISE D.3

1 The PGF for random variable X, the number of heads obtained when tossing an unbiased coin, is

G(t) = 1
2 + 1

2 t. Use G(t) to find E(X) and Var(X).

2 a Write down the PGF G(t) for the random variable X with

spinner

shown.

b Use G(t) to find E(X) and Var(X).

3 Let X be the number of defective items leaving a production line each hour, where X » Po(12).

a Write down the PGF G(t) of X. b Use G(t) to find E(X) and Var(X).

4 Let X » B(n, p) with values 0, 1, 2, ...., n. X has PGF G(t) = (1 ¡ p + pt)n.

Use G(t) and differentiation rules to prove that E(X) = np and Var(X) = np(1 ¡ p).

5 Let X » Geo(p) with values 1, 2, 3, .... . X has PGF G(t) =
pt

1¡ t(1¡ p)
.

Use G(t) and differentiation rules to prove that E(X) =
1

p
and Var(X) =

1¡ p

p2
.

6 Let X » Po(m) with values 0, 1, 2, .... . X has PGF G(t) = em(t¡1).

Use G(t) and differentiation rules to prove that E(X) = Var(X) = m.

7 Let X » NB(r, p) where r 2 Z +, 0 < p < 1. X has PGF G(t) =

µ
pt

1¡ t(1¡ p)

¶r

for

jtj < 1

1¡ p
.

Use G(t) and differentiation rules to prove that E(X) =
r

p
and Var(X) =

r(1¡ p)

p2
.

1
2

3
23

3value the outcome of spinning the regular hexagonal

Discrete uniform
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STATISTICS AND PROBABILITY 61

THE SUM OF INDEPENDENT RANDOM VARIABLES

Theorem 12

Let X and Y be two discrete random variables with values in N and with probability generating

functions GX(t) and GY (t) respectively.

If X and Y are independent then the random variable X + Y has probability generating function

GX+Y (t) where GX+Y (t) = GX(t)GY (t).

Proof:

Suppose GX(t) = p0 + p1t + p2t
2 + ::::

and GY (t) = q0 + q1t + q2t
2 + ::::

Let U = X + Y be the random variable equal to the sum of the values of X and Y .

Now P(U = r) =
rP

k=0

P(X = k and Y = r ¡ k)

=
rP

k=0

P(X = k) P(Y = r ¡ k) fsince X, Y are independentg

=
rP

k=0

pkqr¡k

) GX+Y (t) =
1P
r=0

µ
rP

k=0

pkqr¡k

¶
tr

= p0q0 + (p0q1 + p1q0)t + :::: + (p0qr + p1qr¡1 + :::: + prq0)t
r + ::::

Now consider the product

GX(t)GY (t) = (p0 + p1t + p2t
2 + ::::)(q0 + q1t + q2t

2 + ::::).

By multiplying and collecting like terms we obtain the same function

p0q0 + (p0q1 + p1q0)t + :::: + (p0qr + p1qr¡1 + :::: + prq0)t
r + :::: = GX+Y (t)

Corollary:

Suppose X1, X2, ...., Xn are independent discrete random variables with values in N and

probability generating functions GX1
(t), GX2

(t), ...., GXn
(t) respectively. The random variable

U = X1 + X2 + :::: + Xn has probability generating function GU(t) = GX1
(t)GX2

(t) :::: GXn
(t).

Proof:

By the above theorem,

GX1+X2+::::+Xn
(t)

= GX1+::::+Xn¡1
(t)GXn

(t) fletting X = X1 + :::: + Xn¡1 and Y = Xng
= (GX1+::::+Xn¡2

(t)GXn¡1
(t))GXn

(t) fletting X = X1 + :::: + Xn¡1 and Y = Xn¡1g
...

= GX1
(t)GX2

(t) ::::GXn
(t) as required.
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62 STATISTICS AND PROBABILITY

Consider a binomial random variable X » B(n, p) for constants n 2 Z +, 0 < p < 1.

Let X = Y1 + Y2 + ::::+ Yn where Y1, ...., Yn are n independent Bernoulli random variables

Yi » B(1, p), i = 1, ...., n.

Find the PGF for X in terms of the PGFs for Y1, ...., Yn.

For each Bernoulli random variable Yi » B(1, p),

GYi
(t) = 1 ¡ p + pt and X = Y1 + Y2 + :::: + Yn

) GX(t) = GY1
(t)GY2

(t) ::::GYn
(t) fTheorem 12g

= (1 ¡ p + pt)(1 ¡ p + pt) :::: (1 ¡ p + pt)

= (1 ¡ p + pt)n

Theorem 13

If X and Y are two independent discrete random variables with PGFs G(t) and H(t) respectively,

then:

1 E(X + Y ) = E(X) + E(Y )

2 Var(X + Y ) = Var(X) + Var(Y ).

We note that:

² Theorem 13 is only a special case of the results proved in Theorem 6 and Theorem 7, which

apply to any two random variables X and Y (either both discrete or both continuous).

² X and Y are required to be independent for Theorem 13, but Theorem 6 shows that

E(X + Y ) = E(X) + E(Y ) holds also when X and Y are dependent.

Using the results from Section A, we obtain:

Corollary:

Let X1, X2, ...., Xn be n independent discrete random variables with PGFs G1(t), G2(t), ....,

Gn(t). Then E(X1 + X2 + :::: + Xn) = E(X1) + E(X2) + :::: + E(Xn)

and Var(X1 + X2 + :::: + Xn) = Var(X1) + Var(X2) + :::: + Var(Xn).

Let X » DU(6) with values 1, 2, 3, 4, 5, 6, be the score obtained when a fair 6-sided die is

rolled. Let Y » DU(4) with values 1, 2, 3, 4, be the score obtained when a tetrahedral die is

rolled.

a Use the method of PGFs to find the probability distribution of X + Y .

b Hence find E(X + Y ) and Var(X + Y ).

c Check your answers to b using the formulae for the mean and variance of a discrete uniform

distribution.

Example 33

Example 32
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STATISTICS AND PROBABILITY 63

a X has PGF GX(t) =
t

6

µ
t6 ¡ 1

t¡ 1

¶
= 1

6(t + t2 + :::: + t6).

Y has PGF GY (t) =
t

4

µ
t4 ¡ 1

t¡ 1

¶
= 1

4 (t + t2 + t3 + t4).

Since X and Y are independent random variables, X + Y has PGF

G(t) = GX(t)GY (t) = 1
6 (t + t2 + :::: + t6) £ 1

4(t + t2 + t3 + t4)

= 1
24(t2 + 2t3 + 3t4 + 4t5 + 4t6 + 4t7 + 3t8 + 2t9 + t10)

) the probability distribution for X + Y is:

x + y 2 3 4 5 6 7 8 9 10

P(x + y) 1
24

1
12

1
8

1
6

1
6

1
6

1
8

1
12

1
24

b G0(t) = 1
24(2t + 6t2 + 12t3 + 20t4 + 24t5 + 28t6 + 24t7 + 18t8 + 10t9)

) G0(1) = 1
24(2 + 6 + 12 + 20 + 24 + 28 + 24 + 18 + 10)

= 1
24 £ 144

= 6

) E(X + Y ) = G0(t) = 6.

G00(t) = 1
24(2 + 12t + 36t2 + 80t3 + 120t4 + 168t5 + 168t6 + 144t7 + 90t8)

) G00(1) = 1
24 £ 820

¼ 34:167

) Var(X + Y ) = G00(1) + G0(1) ¡ £G0(1)
¤ 2

¼ 34:167 + 6 ¡ 62

¼ 4:17

c E(X) =
6 + 1

2
= 3:5

E(Y ) =
4 + 1

2
= 2:5

Var(X) =
62 ¡ 1

12
= 35

12

Var(Y ) =
42 ¡ 1

12
= 15

12

) E(X + Y ) = E(X) + E(Y )

= 3:5 + 2:5

= 6

and Var(X + Y ) = Var(X) + Var(Y )

= 35
12 + 15

12

= 41
6

¼ 4:17

EXERCISE D.4

1 Let X be the random variable equal to the outcome of tossing an unbiased disc labelled 1 and 2.

Let Y be the random variable equal to the outcome when rolling a tetrahedral die labelled 1, 2, 3, 4.

a Find the PGF G(t) for X.

b Find the PGF H(t) for Y .

c Let U = X + Y be the total score obtained when both the disc and the die are tossed and

rolled.

i Use G(t) and H(t) to write down the PGF for U in expanded form.

ii Hence find P(U = 4).
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64 STATISTICS AND PROBABILITY

2 The random variable X equals the total score obtained when tossing a tetrahedral die labelled 1, 2,

3, 4 and a fair 6-sided die labelled 1, 2, 3, 4, 5, 6.

a Use probability generating functions to determine the probability distribution of X.

b Hence find P(X = 5).

3 Let X » Po(m) and Y » Po(¸) be two independent Poisson random variables.

a Use the method of PGFs to determine the PGF of U = X + Y .

b Hence show that X + Y » Po(m + ¸).

4 Let X » B(n, p) and Y » B(m, p) be two independent binomial random variables with common

probability p.

a Use the method of PGFs to determine the PGF of U = X + Y .

b Hence show that X + Y » B(n + m, p).

5 Let X » Geo(p) and Y » Geo(p) be two independent geometric random variables with common

probability p.

a Use the method of PGFs to determine the PGF of U = X + Y .

b Hence show that X + Y » NB(2, p).

6 Let X » NB(r, p) and Y » NB(s, p) be two independent negative binomial random variables

with common probability p.

a Use the method of PGFs to determine the PGF of U = X + Y .

b Hence show that X + Y » NB(r + s, p).

7 The spinner shown has equal chance of landing on any given side.

a State the probability of spinning a ‘4’.

b Let Y » Geo
¡
1
7

¢
be the random variable equal to the number of

spins required to spin a ‘4’.

i Write down the PGF G(t) of Y . State the domain of G(t) as

an interval of R .

ii Use G(t) to find E(Y ) and Var(Y ).

c Let X » NB
¡
3, 1

7

¢
be the random variable equal to the number of spins required to spin

three ‘4’s.

i Explain why X = Y1 + Y2 + Y3, where Yi » Geo
¡
1
7

¢
, i = 1, 2, 3.

ii Use the results of c i and b ii to find E(X) and Var(X).

iii Which important property of Y1, Y2, Y3 have you used in c ii?

8 a Let Y » B(1, p), 0 < p < 1, be a Bernoulli random variable with PGF G(t) = 1 ¡ p + pt.

Use G(t) to find:

i E(Y ) ii Var(Y ).

b Let X » B
¡
5; 16
¢

be the binomial random variable equal to the number of ‘6’s obtained in

five rolls of an unbiased 6-sided die. Consider X = Y1 +Y2 + ::::+Y5, where Yi » B(1, 1
6),

i = 1, ::::, 5.

i Write down the PGF H(t) of X. ii Use H(t) to find E(X) and Var(X).

iii Use the results of a to check your answers to b ii. State clearly any results you use.

3

14

7

511 9

IB HL OPT 2ed
magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-Stat-Prob\IB_HL_OPT-Stat-Prob_01\064IB_HL_OPT-Stat-Prob_01.cdr Monday, 8 April 2013 12:47:08 PM BRIAN



STATISTICS AND PROBABILITY 65

9 Let X » NB(r, p) for r 2 Z + and 0 < p < 1. Then X = Y1 + Y2 + :::: + Yr, is the sum

of r independent geometric random variables, where Yi » Geo(p), i = 1, ...., r.

Y1 = the number of trials to obtain the first success.

Y2 = the number of trials after the first success to obtain the second success.

...

Yr = the number of trials after the (r ¡ 1)th success to obtain the rth success.

Use the PGF for a geometric random variable GYi
(t) =

pt

1¡ t(1¡ p)
to find the PGF for X.

10 Let X and Y be independent discrete random variables with PGFs GX(t) and GY (t) respectively.

Use the PGF G(t) = GX(t)GY (t) of X + Y and differentiation rules to prove:

a E(X + Y ) = E(X) + E(Y ) b Var(X + Y ) = Var(X) + Var(Y ).

11 The discrete random variable X takes values 0, 1, 2, 3, .... and has PGF

G(t) =
1P
i=0

pit
i = p0 + p1t + p2t

2 + :::: .

a Find the PGF of: i X + 2 ii 3X

b For constants a, b 2 Z with a, b > 1:

i Show that aX + b has PGF given by H(t) = tbG(ta).

ii Use H(t) and differentiation rules to prove that E(aX + b) = aE(X) + b and

Var(aX + b) = a2Var(X).
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66 STATISTICS AND PROBABILITY

A principal application of statistics is to make inferences about a population based on observations from

a sufficiently large sample from the population. As the sample is used to make generalisations about the

whole population it is essential to employ correct sampling methods when selecting the sample.

In order to establish correct inferences about a population from a sample, we use random sampling

where each individual in the population is equally likely to be chosen.

PARAMETERS AND STATISTICS

A parameter is a numerical characteristic of a population.

A statistic is a numerical characteristic of a sample.

A parameter or a statistic could be the mean, a percentage, the range, the standard deviation, a proportion,

or many other things.

² The mean of a set of discrete data is its arithmetic average, and a measure of the distribution’s

centre. We let x denote the mean of a sample, and ¹ denote the population mean.

² The standard deviation of a set of data measures the deviation between the data values and the

mean. It is a measure of the variability or spread of the distribution. We let s denote the standard

deviation of a sample, and ¾ denote the population standard deviation.

When we calculate a sample statistic to estimate the population parameter, we cannot expect it to be

exactly equal to the population parameter. Some measure of reliability must therefore be given, and

this is generally done using a confidence interval which is an interval of values within which we are

“confident” the population parameter lies.

To obtain a confidence interval, we need to know how the sample statistic is distributed. We call the

distribution of a sample statistic its sampling distribution.

Let X be the discrete random variable equal to the number of heads obtained when an unbiased coin

is tossed once. X takes values x = 0 (0 heads) and x = 1 (1 head), and X » B
¡
1, 1

2

¢
.

The probability distribution for X is:

TWO TOSSES

Suppose now we toss the coin twice.

Let x1 = the number of heads on the first toss

and x2 = the number of heads on the second toss

be the values of the random variable with distributions X1 » B
¡
1, 1

2

¢
and X2 » B

¡
1, 1

2

¢
.

DISTRIBUTIONS OF THE SAMPLE MEAN AND
THE CENTRAL LIMIT THEOREM

E
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STATISTICS AND PROBABILITY 67

Let x =
x1 + x2

2
be the mean for samples of n = 2 tosses.

We are interested in the distribution X of x, called the sampling distribution of x, of all possible

means from samples of size 2.

Possible samples x

TT ´ f0, 0g 0

TH ´ f0, 1g 1
2

HT ´ f1, 0g 1
2

HH ´ f1, 1g 1

The sampling distribution of x is:

x 0 1
2 1

Frequency 1 2 1

P (x) = P(X = x) 1
4

2
4

1
4

THREE TOSSES

Now suppose we are interested in the sample mean, x, for each possible sample of n = 3 tosses.

Possible samples x

TTT ´ f0, 0, 0g 0

TTH ´ f0, 0, 1g 1
3

THT ´ f0, 1, 0g 1
3

HTT ´ f1, 0, 0g 1
3

Possible samples x

HHT ´ f1, 1, 0g 2
3

HTH ´ f1, 0, 1g 2
3

THH ´ f0, 1, 1g 2
3

HHH ´ f1, 1, 1g 1

The sampling distribution X of x is:

x 0 1
3

2
3 1

Frequency 1 3 3 1

P (x) = P(X = x) 1
8

3
8

3
8

1
8

We notice that the sampling distribution X of x is

again symmetric.

Consider an unbiased triangular spinner with possible outcomes x = 1, 2, or 3. The spinner is

spun three times, so n = 3.

a List the possible samples, and calculate the sample mean x for each.

b Draw a sampling distribution column graph to display the information.

c Describe the sampling distribution.

a Possible samples x

f1, 1, 1g 1

f1, 1, 2g 4
3

f1, 1, 3g 5
3

f1, 2, 1g 4
3

f1, 2, 2g 5
3

f1, 2, 3g 2

f1, 3, 1g 5
3

Possible samples x

f1, 3, 2g 2

f1, 3, 3g 7
3

f2, 1, 1g 4
3

f2, 1, 2g 5
3

f2, 1, 3g 2

f2, 2, 1g 5
3

f2, 2, 2g 2

Possible samples x

f2, 2, 3g 7
3

f2, 3, 1g 2

f2, 3, 2g 7
3

f2, 3, 3g 8
3

f3, 1, 1g 5
3

f3, 1, 2g 2

f3, 1, 3g 7
3

Possible samples x

f3, 2, 1g 2

f3, 2, 2g 7
3

f3, 2, 3g 8
3

f3, 3, 1g 7
3

f3, 3, 2g 8
3

f3, 3, 3g 3

Example 34
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68 STATISTICS AND PROBABILITY

b The sampling distribution X of x is:

x 1 4
3

5
3 2 7

3
8
3 3

Frequency 1 3 6 7 6 3 1

P (x) 1
27

3
27

6
27

7
27

6
27

3
27

1
27

c The sampling distribution for this small value of n has a symmetric bell shape.

EXERCISE E.1

1 A square spinner is used to generate the digits 1, 2, 3, and 4 at random.

a A sample of two digits is generated.

i List the possible samples of n = 2 digits, and calculate the

sample mean x for each.

ii Construct a table which summarises the sampling distribution

of x and the probabilities associated with it.

iii Draw a sampling distribution column graph to display the information.

b Repeat a, but this time consider samples of n = 3 digits.

2 A random variable X has two possible values (2 and 3), with equal chance of each occurring.

a List all possible samples of size n = 4, and for each possible sample find the sample mean x.

b Construct a table summarising the sampling distribution of x, complete with probabilities.

3 Two ordinary dice are rolled. The mean x of every possible set of results is calculated.

Find the sampling distribution of x.

ERRORS IN SAMPLING

Provided a sample is large enough, the errors should be small and the sample statistics should provide an

accurate picture of the population. However, whenever sample data is collected, we expect differences

between the sample statistics and population parameters.

Errors which may be due to faults in the sampling process are systematic errors, resulting in bias.

Systematic errors are often due to poor sample design, or are errors made when measurements are taken.

Errors resulting from natural variability are random errors, sometimes called statistical errors.

In the following investigation we examine how well actual samples represent a population. A close

look at how samples differ from each other helps us better understand the sampling error due to natural

variation (random error).

3

1 4

2

P(x)

x–
1 Re Te 2 Ue Ie 3

Gw_u
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STATISTICS AND PROBABILITY 69

In this investigation we will examine samples from a symmetrical distribution as well as one that is

skewed.

We will examine how the random process causes variations in:

² the raw data which makes up different samples

² the frequency counts of specific outcome proportions

² a measure of the centre (mean)

² a measure of the spread (standard deviation).

What to do:

1 Click on the icon. The given distribution (in column A) consists of 487 data values. The

five-number summary is given and the data has been tabulated. Record the five-number summary

and the frequency table given.

2 At the bottom of the screen click on Samples . Notice that the starting sample size is 10 and

the number of random samples is 30. Change the number of random samples to 200.

3 Click on Find samples and when this is complete click on Find sample means .

4 Click on Analyse .

a Record the population mean ¹, and standard deviation ¾, for the population.

b Record the mean of the sample means and standard deviation of the sample means.

c Examine the associated histogram.

STATISTICS

PACKAGE
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70 STATISTICS AND PROBABILITY

5 Click on Samples again and change the sample size to 20. Repeat steps 3 and 4 to gather

information about the random samples of size 20.

6 Repeat with samples of size 30, 40, and 50. Comment on the variability.

7 What do you observe about the mean of sample means in each case, and the population mean ¹?

8 Is the standard deviation of the sample means equal to the standard deviation ¾ for the

population?

n ¾ 2
X

10

20

30

40

50

9 Let the standard deviation of the sample means be represented by ¾
X

. From

a summary of your results, copy and complete a table like the one given.

Determine the model which links ¾
X

and the sample size n.

10 Now click on the icon for data from a skewed distribution.

Complete an analysis of this data by repeating the above

procedure. Record all your results.

From the Investigation, you should have discovered that:

² The samples consist of randomly selected members of the population.

² There is great variability in samples and their means.

² In larger samples there is less variability, so the values of ¾
X

are smaller.

² The means of larger samples are more accurate in estimating the population mean.

² The mean of sample means approximates the population mean: ¹
X

¼ ¹.

² The standard deviation of the sample means, ¾
X

¼ ¾p
n

, where n is the size of each sample.

² The distribution X of sample means x, for non-normally distributed populations is approximately

bell-shaped for large values of n. The larger the value of n, the more symmetric the distribution,

and the more the distribution appears approximately normal.

THE SAMPLING DISTRIBUTION OF SAMPLE MEANS

Let X be any random variable with mean ¹ = E(X) and variance ¾2 = Var(X).

Suppose x1, x2, ...., xn are n independent observations or values taken from the distribution (or parent

population) X. Each xi has distribution Xi identical to X, and so E(Xi) = ¹ and Var(Xi) = ¾2,

i = 1, ...., n.

Let x =
x1 + x2 + ::::+ xn

n
be the mean of a sample fx1, ...., xng of size n taken from the parent

population X, with replacement.

By considering all possible samples of size n, the collection of possible means x forms a distribution X
called the sampling distribution of sample means.

The distribution X has E(X) = ¹ and Var(X) =
¾2

n
.
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STATISTICS AND PROBABILITY 71

Proof: E(X) = E
³
X1 +X2 + ::::+Xn

n

´
= E

³
1

n
X1 +

1

n
X2 + :::: +

1

n
Xn

´
=

1

n
E(X1) +

1

n
E(X2) + :::: +

1

n
E(Xn) fTheorem 7g

=
1

n
(n¹)

= ¹

Var(X) = Var
³
X1 +X2 + ::::+Xn

n

´
=

1

n2
Var(X1 + X2 + :::: + Xn) fTheorem 7g

=
1

n2
(Var(X1) + Var(X2) + :::: + Var(Xn)) fTheorem 7g

=
1

n2
(n¾2)

=
¾2

n

These results confirm our observations in the previous Investigation.

THE CENTRAL LIMIT THEOREM (CLT)

The Central Limit Theorem gives the remarkable result that regardless of the type of distribution of the

parent population X, the distribution of X of sample means will be approximately a normal distribution,

provided n is large enough.

If we take samples of size n from any (normal or non-normal) population X with mean ¹ and

variance ¾2, then provided the sample size n is large enough, the distribution X of sample means

is approximately normal and we may use the approximation X » N

µ
¹,

¾2

n

¶
. The larger the value

of n, the better the approximation will be.

We write: E(X) = ¹X = ¹ and Var(X) = ¾ 2
X = ¾2

E(X) = ¹
X

= ¹ and Var(X) = ¾ 2
X

=
¾2

n
.

We note that:

² Many texts suggest a “rule of thumb” of n > 30 to indicate n is large enough.

² If the parent distribution X is a normal distribution, then the size of n is not important for X to

be normal. In this case, X » N

µ
¹,

¾2

n

¶
for all values of n, since by Theorem 8 the mean X

is X =
1

n
(X1 + X2 + :::: + Xn) where Xi » N(¹, ¾2), i = 1, ...., n, and so X is a linear

combination of normal random variables and is therefore itself a normal random variable.

² The distribution of X more closely approximates a normal distribution if the parent distribution of

X is symmetric and not skewed.
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72 STATISTICS AND PROBABILITY

² Since ¾
X

=
¾p
n

, the distribution of the sample means has a reducing standard deviation as n

increases.

² The mean ¹
X

is constant and equal to the population mean ¹ for all n 2 Z +.

As the sample size n increases:

A random sample of size 45 is taken from a population with

mean 60 and standard deviation 4.

Find the probability that the mean of the sample is less than 59.

Since the sample is of size n = 45, the CLT can be applied.

» N
¡
60, 16

45

¢
.

) P(X < 59) ¼ 0:0468 f¹
X

= 60, ¾
X

=
q

16
45 g

A large number of samples of size n are taken from X » Po(2:5). Approximately 5% of the

sample means are less than 2:025. Use the Central Limit Theorem to estimate n.

If X » Po(2:5) then E(X) = ¹ = 2:5 and Var(X) = ¾2 = 2:5 .

By the CLT X » N

µ
¹,

¾2

n

¶
approximately, and so X » N

³
2:5,

2:5

n

´
.

We require n such that P(X < 2:025) = 0:05 .

) P

Ã
X ¡ 2:5q

2:5
n

<
2:025¡ 2:5q

2:5
n

!
= 0:05 fsetting up Z =

X ¡ ¹

¾p
n

g

)
2:025¡ 2:5q

2:5
n

= ¡1:645

) n ¼ 29:98

Since n is an integer, n = 30

Example 36

Example 35 With the Central Limit

Theorem we are looking at

the distributions of the

sample means x, not at the

distribution of individual

scores x from X.

X ¹ ¹

¾
X

¾
X

¾
X

¹
X

= ¹ X X

) X
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STATISTICS AND PROBABILITY 73

Consider rolling a die where the random variable X is the number of dots on a face.

a Write the probability distribution of X in a table. Graph the distribution.

b Find the mean and standard deviation of the distribution.

c Many hundreds of random samples of size 36 are taken. Find:

i ¹
X

, the mean of the sampling distribution of the sample means

ii ¾
X

, the standard deviation of the sampling distribution of the sample means.

d Comment on the shape of the distribution X of the sample means x.

a X is the discrete uniform distribution:

xi 1 2 3 4 5 6

pi
1
6

1
6

1
6

1
6

1
6

1
6

b ¹ =
P

pixi = 1
6 (1) + 1

6(2) + 1
6(3) + :::: + 1

6(6) = 3:5

¾2 =
P

x 2
i pi ¡ ¹2

= 1
¡
1
6

¢
+ 4

¡
1
6

¢
+ 9

¡
1
6

¢
+ 16

¡
1
6

¢
+ 25

¡
1
6

¢
+ 36

¡
1
6

¢¡ (3:5)2

¼ 2:9167

) ¾ ¼ 1:708

c i ¹
X

= ¹ = 3:5 ii ¾
X

=
¾p
36

¼ 1:708

6
¼ 0:285 fCLTg

d Since n = 36 is sufficiently large, we can apply the Central Limit Theorem. The distribution

X of the sample means x will resemble the normal curve X » N(3:5, 0:2852).

THE SAMPLING ERROR

The sampling error is an estimate of the margin by which the sample mean might differ from the

population mean.

¾
X

is used to represent the sampling error, also called the standard error, of the mean. For samples

of n independent values taken from a distribution with standard deviation ¾, the sampling error is

¾
X

=
¾p
n

.

In summary, there are two factors which help us to decide if a sample provides useful and accurate

information:

² Sample size

If the sample size is too small, the statistics obtained from it may be unreliable. A sufficiently large

sample should reflect the same mean as the population it comes from.

² Sample error

The sampling error indicates that for a large population, a large sample may be unnecessary. For

example, the reliability of the statistics obtained from a sample of size 1000 can be almost as good

as those obtained from a sample of size 4000. The additional data may provide only slightly more

reliable statistics, and therefore be considered unnecessary.

Example 37

x

P(X = x)
Qy

1 2 3 4 5 6
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74 STATISTICS AND PROBABILITY

EXERCISE E.2

1 Random samples of size 36 are selected from a population with mean 64 and standard deviation 10.

For the sampling distribution of the sample means, find:

a the mean b the standard deviation.

2 Random samples of size n are selected from a population with standard deviation 24.

a Write ¾
X

in terms of n.

b Find ¾
X

when: i n = 4 ii n = 16 iii n = 64

c How large must a sample be for the sampling error to equal 4?

d Graph ¾
X

against n.

e Discuss ¾
X

as n increases in value. Explain the significance of this result.

3 A large number of samples of size n are taken from X » Po(6). Approximately 9% of the sample

means are less than 5. Find the value of n.

4 The IQ measurements of a population have mean 100 and standard deviation of 15. Many hundreds

of random samples of size 36 are taken from the population, and a relative frequency histogram of

the sample means is formed.

a What would we expect the mean of the sample means to be?

b What would we expect the standard deviation of the sample means to be?

c What would we expect the shape of the histogram to look like?

The age of business men in Sweden is normally distributed with mean 43 and standard deviation 8.

If 16 business men are randomly selected from the population, find the probability that the sample

mean of these measurements is:

a less than 40 b greater than 45 c between 37 and 47.

X » N

Ã
43,

µ
8p
16

¶2
!

, so X » N(43, 22).

a

P(X < 40) ¼ 0:0668

b

P(X > 45) ¼ 0:159

c

P(37 < X < 47) ¼ 0:976

Example 38

43 4737 X

4340 X 43 45 X
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STATISTICS AND PROBABILITY 75

5 When a coin is tossed, the random variable X is the number of heads which appear.

The probability distribution for x is: xi 0 1

pi
1
2

1
2

a Find ¹ and ¾ for the X-distribution.

b Now consider the sampling distribution of X.

i List the 16 possible samples of size n = 4 and construct a probability function table.

ii For this sampling distribution of means in b, find ¹
X

and ¾
X

.

iii Check with a that ¹
X

= ¹ and ¾
X

=
¾p
n

.

The contents of soft drink cans is randomly distributed with mean 378 mL and standard deviation

7:2 mL. Find the likelihood that:

a an individual can contains less than 375 mL

b a box of 36 cans has average contents less than 375 mL.

a X » N(378, 7:22)

P(X < 375) ¼ 0:338

b X » N(378, 7:22

36 )

P(X < 375) ¼ 0:006 21

There is approximately 0:6% chance of

getting a box of 36 cans with average

contents less than 375 mL, compared with

a 33:8% chance of an individual can having

contents less than 375 mL.

6 The values of homes in a wealthy suburb of a small city are skewed high with mean E620 000 and

standard deviation E80 000. A sample of 25 homes was taken and the mean of the sample was

E643 000.

a Using the Central Limit Theorem, find the probability that a random sample of 25 homes in

this suburb will have a mean of at least E643 000.

b Comment on the reliability of your answer to a.

7 The heights of a particular species of plant have mean 21 cm and standard deviation
p

90 cm. A

random sample of 40 plants is taken and the mean height is calculated. Find the probability that

this sample mean lies between 19:5 cm and 24 cm.

8 At a college, the masses of the male students have mean 70 kg and standard deviation 5 kg. 64 male

students are chosen at random. Find the probability that their mean mass is less than 68:75 kg.

Example 39

The scores for individual

cans have distribution

X » N(378, 7:22) .

The scores for the means of

samples of size 36 have

distribution

X » N(378, ).7:22

36

378375

Area .= 0 338 Distribution of

individual scores

X

378375

Area

.

=
0 00621

Distribution of
sample means

X
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76 STATISTICS AND PROBABILITY

9 A random sample of size 100 is taken from X » B(20, 0:6) and the sample mean x is calculated.

Use the Central Limit Theorem to find the probability that:

a x is greater than 12:4 b x is less than 12:2 .

10 Suppose the duration of human pregnancies can be modelled by a normal distribution with mean

267 days and standard deviation 15 days. If a pregnancy lasts longer than 267 days it is said to be

“overdue”. If a pregnancy lasts less than 267 days it is said to be “premature”.

a What percentage of pregnancies will be overdue by between 1 and 2 weeks?

b Find the 80th percentile for pregnancy duration.

c A certain obstetrician is providing prenatal care for 64 pregnant women.

i Describe the sampling distribution X for the sample mean of all random samples of size 64.

ii Find the mean and standard deviation for the distribution of the random variable X.

iii Find the probability that the mean duration of the obstetrician’s patients’ pregnancies will

be premature by at least one week.

d Suppose the duration of human pregnancies is not actually a normal distribution, but is skewed

to the left. Does that change the answers to parts a to d above?

11 On average, Ayrshire cows produce 49 units of milk per

day with standard deviation 5:87 units, whereas Jersey cows

produce 44:8 units of milk per day with standard deviation

5:12 units. For each breed, the production of milk can be

modelled by a normal distribution.

a Find the probability that a randomly selected Ayrshire

cow will produce more than 50 units of milk daily.

b Find the probability that a randomly selected Jersey

cow will produce more milk than a randomly selected

Ayrshire cow.

c A dairy farmer has 25 Jersey cows. Find the probability that the daily production for this small

herd exceeds 46 units per cow per day.

d A neighbouring farmer has 15 Ayrshire cows. Find the probability that this herd produces at

least 4 units per cow per day more than the Jersey herd.

The weights of male employees in a bank are normally distributed

with a mean ¹ = 71:5 kg and standard deviation ¾ = 7:3 kg.

The bank has an elevator with a maximum load of 444 kg. Six

male employees enter the elevator. Calculate the probability that

their combined weight exceeds the maximum load.

X » N(71:5, 7:32)

Let X be the mean weight of a random sample of n = 6 male

employees.

By the CLT, X » N
³
71:5; 7:3

2

6

´
) P

¡
X > 444

6

¢ ¼ 0:201 f¾
X

= 7:3p
6
g

This is the same answer as in Example 6 a.

Example 40

We repeat Example 6 a, but

this time employ the Central

Limit Theorem.
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STATISTICS AND PROBABILITY 77

12 An elevator has a maximum recommended load of 650 kg.

The weights of adult males are distributed normally with a

mean of 73:5 kg and standard deviation of 8:24 kg. What

is the maximum recommended number of adult males that

should use the elevator at any one time, if you want to be

at least 99:5% certain that the total weight does not exceed

the maximum recommended load.

Hint: Start with n = 9.

13 A large number of samples of size n are taken from a

population with mean 74 and standard deviation 6. The

probability that the sample mean is less than 70:4, is

0:001 35. Use the Central Limit Theorem to find n.

A population is known to have a standard deviation of 8 but has an unknown mean ¹. In order to

estimate the mean ¹, the mean of a random sample of size 60 is taken. Find the probability that

the estimate is in error by less than 2.

Since n = 60, the CLT applies.

Let X be the mean of a random sample of size 60.

By the CLT, X » N(¹, 82

60).

The error may be positive or negative, so it is X ¡ ¹ or ¹ ¡ X, and we need to find

P(
¯̄
X ¡ ¹

¯̄
< 2).

Now P(
¯̄
X ¡ ¹

¯̄
< 2)

= P(¡2 < X ¡ ¹ < 2)

= P

Ã
¡2
¾p
n

<
X ¡ ¹

¾p
n

<
2
¾p
n

!
fsetting up Z =

X ¡ ¹

¾p
n

g

= P

Ã
¡2

8p
60

< Z <
2

8p
60

!
= P

³
¡

p
60
4 < Z <

p
60
4

´
¼ 0:947

) there is about 94:7% probability that the estimate is in error by less than 2.

14 The standard deviation of the masses of articles in a large population is 4:55 kg. If random samples

of size 100 are drawn from the population, find the probability that a sample mean will differ from

the true population mean by less than 0:8 kg.

15 The lengths of rods produced by a machine have mean 100 cm and standard deviation 15 cm. Find

the probability that if 60 rods are randomly chosen from the machine, the mean length of the sample

will be at least 105 cm.

Example 41
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78 STATISTICS AND PROBABILITY

16 Chocblock bite-size chocolate bars are produced in a factory using a machine. The weights of the

bars are normally distributed with mean 18:2 grams and standard deviation 3:3 grams. The bars are

sold in packets containing 25 bars each. Hundreds of thousands of packets are produced each year.

a Find ¹
X

and ¾
X

for this situation.

b On each packet it is printed that the nett weight of contents is 425 grams.

i What is the manufacturer claiming about the mean weight of each bar?

ii What percentage of packets will fail to meet the 425 gram claim?

c Suppose an additional bar is added to each packet with the nett weight claim retained at

425 grams.

i Find the new values of ¹
X

and ¾
X

.

ii What percentage of packets will fail to meet the claim now?

Mean (g) Variance (g2)

Small 315 4

Economy 950 25

17 In Example 8, a cereal manufacturer produces packets

of cereal in two sizes, small (S) and economy (E).

The amount in each packet is distributed normally and

independently as shown in the table.

For bulk shipping, 15 small packets of cereal are placed in small cartons, and separately, 10 economy

packets of cereal are placed in economy cartons.

Let s be the mean weight of a packet in a carton of small packets of cereal.

Let e be the mean weight of a packet in a carton of economy packets of cereal.

a Write down the distribution: i S of s ii E of e.

b A carton of each type is selected at random. Find the probability that the mean weight in the

economy carton is less than three times the mean weight in the small carton.

c One economy carton and three small cartons are selected at random. Find the probability that

the mean weight in the economy carton is less than the sum of the mean weights in the small

cartons.

18 A pharmaceutical company claims that a new drug cures 75% of patients suffering from a certain

disease. However, a medical committee believes that less than 75% are cured. To test the

pharmaceutical company’s claim, a trial is carried out in which 100 patients suffering from the

disease are given the new drug. It is found that 68 of these patients are cured.

a Assuming the pharmaceutical company’s claim is true:

i state the distribution which determines the number of patients cured in a random sample

of 100 patients

ii write down the mean and the standard deviation of this distribution

iii determine the probability that 68 or fewer patients are cured in a random sample of

100 patients

iv use the CLT to determine the probability that 68 or fewer patients are cured in a random

sample of 100 patients.

b Discuss whether the company’s claim is reasonable.
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STATISTICS AND PROBABILITY 79

THE PROPORTION OF SUCCESSES IN A LARGE SAMPLE

We are frequently presented by the media with estimates of population proportions, often in the form of

percentages.

For example:

² If an election was held tomorrow, 52% of the population would vote for the “Do Good” party.

² 17% of the South African population tested positive to HIV.

² 73% of company executives say they will not employ smokers.

To estimate a population proportion p, we consider taking a random sample. The distribution of the

random variable bp, the sample proportion, determines the accuracy of the estimate.

Consider the election example:

To estimate the proportion of voters who intend to vote for the “Do Good” party, a random sample of

3500 voters was taken and 1820 indicated they would vote “Do Good”. The sample proportion of

“Do Good” voters is denoted bp = 1820
3500 = 0:52 .

However, this is just one particular sample. We want to know, for all samples of size n, the mean ¹bp
and standard deviation ¾bp of the bp distribution.

Firstly, we see that bp =
X

n
where

8<:
bp = the sample proportion

X = the number of successes in the sample

n = sample size.

The random variable X which stands for the number of successes in the sample (the number who vote

“Do Good” in our example) has a binomial distribution X » B(n, p), where p is the population

proportion of “Do Good” voters.

Now consider bp =
Y1 + Y2 + ::::+ Yn

n
, where Y1, Y2, ...., Yn are the n independent Bernoulli

random variables Yi » B(1, p), with E(Yi) = p, Var(Yi) = p(1 ¡ p), i = 1, 2, ...., n, such that

X = Y1 + Y2 + :::: + Yn, and

Yi =

½
0 if that person in the sample does not vote for the “Do Good” party.

1 if that person in the sample does vote for the “Do Good” party.

Therefore bp = Y = the sample mean of sample fY1, Y2, ...., Yng.

If n is sufficiently large: bp » N
³
p,

p (1¡ p)

n

´

Proof: E(bp) = E(Y ) = E
³
Y1 + Y2 + ::::+ Yn

n

´
=

1

n
(E(Y1) + E(Y2) + :::: + E(Yn))

=
1

n
£ np fTheorem 6g

= p

bp is a mean.
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80 STATISTICS AND PROBABILITY

Var(bp) = Var(Y ) = Var
³
Y1 + Y2 + ::::+ Yn

n

´
=

1

n2
(Var(Y1) + Var(Y2) + :::: + Var(Yn))

=
1

n2
(np(1 ¡ p))

=
p(1¡ p)

n

Since bp = Y is a sample mean, and since n is large, we can apply the CLT.bp has an approximately normal distribution, and bp » N
³
p,

p(1¡ p)

n

´
.

Also, since X = nbp, and for large n, bp » N
³
p,

p(1¡ p)

n

´
, by Theorem 8 we find that X has an

approximately normal distribution with E(X) = E(nbp)
= nE(bp)
= np

and Var(X) = Var(nbp)
= n2Var(bp)
= n2 £ p(1¡ p)

n

= np(1 ¡ p).

Therefore, the discrete binomial random variable X » B(n, p) can be approximated by a continuous

normal random variable Xc » N(np, np(1 ¡ p)).

From Section C, the accepted conditions to apply this normal approximation to the binomial distribution

are np > 5 and n(1 ¡ p) > 5. We also now add n > 30 for the CLT to apply.

The local paper claims that Ms Claire Burford gained 43% of the votes in the local Council

elections.

a Find the probability that a poll of randomly selected voters would show over 50% in favour

of Ms Burford, given a sample size of: i 150 ii 750

b A sample of 100 voters was taken and 62% of these voted for Ms Burford. Find the probability

of this occurring and comment on the result.

a i The population proportion p = 0:43, so 1 ¡ p = 0:57.

The sample size n = 150 is large enough to apply the CLT.

Now bp » N
¡
0:43, 0:43£0:57

150

¢
) P(bp > 0:5) ¼ 0:0417

ii bp » N
¡
0:43, 0:43£0:57

750

¢
) P(bp > 0:5) ¼ 0:000 054 0

b bp » N
¡
0:43, 0:43£0:57

100

¢
) P(bp > 0:62) ¼ 0:000 062 1

This is so unlikely that we would question the accuracy of the claim that Ms Burford only

gained 43% of the vote.

Example 42

IB HL OPT 2ed
magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-Stat-Prob\IB_HL_OPT-Stat-Prob_01\080IB_HL_OPT-Stat-Prob_01.cdr Tuesday, 9 April 2013 4:13:42 PM BRIAN



STATISTICS AND PROBABILITY 81

EXERCISE E.3

1 An egg producer claims that less than 4% of the eggs delivered to a supermarket will be broken.

On a busy day, 1000 eggs are delivered to this supermarket and 7% are broken.

a Find the probability that this will happen. b Briefly comment on the producer’s claim.

2 Two sevenths of households in a country town are known to own computers. Find the probability

that in a random sample of 100 households, no more than 29 households own a computer.

3 A pre-election poll is run to determine the proportion of voters who favour the Labour Party (LP).

The poll is based on one random sample of 2500 voters.

Let p be the true proportion of voters who support the LP, and suppose p = 0:465 .

a For the sampling distribution of proportions, find:

i the mean ii the standard deviation.

b State the sampling distribution and its normal approximation.

c Hence, find the probability that:

i the sample mean is less than 0:46

ii between 45% and 47% of voters in the sample favour the LP

iii the proportion bp of LP supporters in the sample differs by more than 0:035 from p.

d Interpret your answer in c iii.

4 Eighty five percent of the plum trees grown in a particular area

produce more than 700 plums.

a State the sampling distribution for the proportion of plum trees

that produce more than 700 plums in this area, assuming a

sample of size n.

b State the conditions under which the sampling distribution can

be approximated by the normal distribution.

c If a random sample of 200 plum trees is selected, find the

probability that:

i less than 75% produce more than 700 plums

ii between 75% and 87% produce more than 700 plums.

d In a random sample of 500 plum trees, 350 produced more than 700 plums.

i Find the probability of 350 or fewer trees producing more than 700 plums.

ii Comment, giving two reasons, why this sample is possible.

5 A regular pentagon has sectors numbered 1, 1, 2, 3, 4. Find the probability that, when the pentagon

is spun 400 times, the result of a 1 occurs:

a more than 150 times b less than 175 times.

6 A tyre company in Moscow claims that at least 90% of the tyres they sell will last at least 30 000 km.

A sample of 250 tyres were tested, and it was found that 200 of the tyres did not last for at least

30 000 km.

a State the distribution of the sample proportions, with any assumptions made.

b Find the proportion of samples of 250 tyres that would have no more than 200 tyres lasting at

least 30 000 km.

c Comment on this result.
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82 STATISTICS AND PROBABILITY

In the previous section we considered taking a sample of n independent observations (or values) from a

random variable X with mean E(X) = ¹ and variance Var(X) = ¾2.

Let X be a random variable with mean ¹ and variance ¾2. A sample of size n is taken from the

population of X with replacement so the values are independent. The independent values x1, x2, :...,
xn can be interpreted as x1 2 X1, x2 2 X2, ...., xn 2 Xn where Xi, i = 1, 2, ...., n are n copies

of the distribution of X.

Thus E(X1) = E(X2) = :::: = E(Xn) = ¹

and Var(X1) = Var(X2) = :::: = Var(Xn) = ¾2.

It is often impractical to work with an entire population, and often the population parameters ¹, ¾2,

and proportion p are unknown anyway. In these cases, we work with a sample, and we use the sample

statistics to estimate the population parameters.

For a large enough sample, we expect:

² the sample mean x to be close in value to the population mean ¹

² the sample proportion bp to be close in value to the population proportion p.

An estimator T is a statistic, which is a function of the values in a sample, used to estimate a population

parameter µ.

An estimate t is a specific value of T calculated from a particular sample.

For example, the number of heads obtained when an unbiased coin is tossed once, is described by

X » B
¡
1, 1

2

¢
, where E(X) = ¹ = 1

2 and Var(X) = ¾2 = 1
4 .

Suppose the coin is tossed many times. Consider samples fx1, x2, x3g of size n = 3, which are the

numbers of heads obtained in each of three (independent) coin tosses.

The associated sample mean x =
x1 + x2 + x3

3
has distribution

X =
X1 +X2 +X3

3
= the average number of heads obtained in three coin tosses

where X1, X2, X3 are identical copies of the distribution X. X is an estimator for the mean ¹ of X.

For the sample f1, 0, 1g, corresponding to the coin toss results HTH, then x =
1 + 0 + 1

3
= 2

3 is an

estimate of ¹.

Let bp be the sample proportion of heads obtained in n coin tosses.

Then bp =
X1 +X2 + ::::+Xn

n
where X1, X2, ...., Xn are

identical copies of the distribution X.

bp is an estimator for the population proportion p = 1
2 of heads

obtained when an unbiased coin is tossed many, many times.

POINT ESTIMATION (UNBIASED ESTIMATORS

AND ESTIMATES)

F

is also a mean!bp
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STATISTICS AND PROBABILITY 83

For the sample f1, 1, 0, 0, 1, 0, 1g, corresponding to the coin toss results HHTTHTH, when the coin

is tossed seven times, bp =
1 + 1 + 0 + 0 + 1 + 0 + 1

7
= 4

7 is an estimate of p.

Intuitively, a “good” estimator should have values which centre about the parameter it is approximating,

and not be biased to values below or above the value of the parameter.

The set of all estimates t, calculated from each possible sample using estimator T , is the sampling

distribution of T .

An estimator T for a population parameter µ is unbiased if the mean of the sampling distribution of T

equals the parameter µ, so E(T ) = µ. Any estimate t from T is then called an unbiased estimate

of µ.

Otherwise, T is a biased estimator of µ, and any estimate t from T is then called a biased estimate

of µ.

Unbiased estimator T of µ Biased estimator T of µ

or

We have already proved in Section E that the sampling distribution of X has E(X) = ¹ and the

sampling distribution of bp has E(bp) = p. Hence:

² A sample mean x is an unbiased estimate of the population mean ¹.

² A sample proportion bp is an unbiased estimate of the population proportion p.

Suppose we have an unbiased estimator T for a population parameter µ, so E(T ) = µ, and therefore

estimates found using T are centred about µ. The sampling distribution of T could be:

or

We see that the spread of the distribution of estimates could be small or large. It follows that the estimates

found using T could vary but be close to µ, or could vary wildly from the value of µ.

T
µ

T
µ

T
µ

T
µ

T
µ
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84 STATISTICS AND PROBABILITY

We therefore define:

If T1 and T2 are two unbiased estimators for a parameter µ, then T1 is a more efficient estimator than

T2 if Var(T1) < Var(T2).

Let X be a random variable with unknown mean ¹ and unknown variance ¾2. Consider samples

fx1, x2g of size 2 of independent values taken from X.

Let T1 =
X1 +X2

2
and T2 =

3X1 + 5X2

8
.

a Show that T1 is an unbiased estimator of ¹.

b Show that T2 is an unbiased estimator of ¹.

c Calculate estimates t1 and t2 for the sample f2:1, 3:5g.

d Find Var(T1) and Var(T2).

e Which of T1 and T2 is the more efficient estimator of ¹? Why?

Since X1 and X2 each have distribution identical to the distribution of X,

E(X1) = E(X2) = E(X) = ¹ and Var(X1) = Var(X2) = Var(X) = ¾2.

a E(T1) = E
³
X1 +X2

2

´
= 1

2E(X1 + X2)

= 1
2(E(X1) + E(X2))

= 1
2(¹ + ¹)

=
2¹

2

= ¹

) T1 is an unbiased estimator of ¹.

b E(T2) = E
³
3X1

8
+

5X2

8

´
= 3

8E(X1) + 5
8E(X2)

= 3
8¹ + 5

8¹

= ¹

) T2 is an unbiased estimator of ¹.

c t1 =
2:1 + 3:5

2
=

5:6

2
= 2:8 t2 =

3(2:1) + 5(3:5)

8
= 2:975

d Var(T1) = Var
¡
1
2X1 + 1

2X2

¢
= 1

4Var(X1) + 1
4Var(X2)

= 1
4¾

2 + 1
4¾

2

=
2¾2

4

=
¾2

2

Var(T2) = Var
¡
3
8X1 + 5

8X2

¢
=
¡
3
8

¢2
Var(X1) +

¡
5
8

¢2
Var(X2)

= 9
64¾

2 + 25
64¾

2

= 34
64¾

2

= 17
32¾

2

e ¾2 is a constant, and
¾2

2
= 16

32¾
2

Now, 16
32¾

2 < 17
32¾

2

) Var(T1) < Var(T2)

) T1 is the more efficient estimator of ¹.

Example 43
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STATISTICS AND PROBABILITY 85

ESTIMATION OF VARIANCE

Consider the distribution of a random variable X with unknown mean E(X) = ¹ and unknown variance

Var(X) = ¾2.

Let fx1, x2, ...., xng be a random sample of size n of independent values taken from random variable X.

We are sampling with replacement, and each value xi is a variable where xi 2 Xi, i = 1, ...., n,

and the distribution of Xi is identical to the distribution of X. Thus E(Xi) = E(X) = ¹ and

Var(Xi) = Var(X) = ¾2 for i = 1, ...., n.

x =
x1 + ::::+ xn

n
is the sample mean as usual, and s 2

n =

nP
i=1

(xi ¡ x)2

n
is the sample variance.

As shown above, x lies in the sampling distribution X, and is an unbiased estimate of ¹.

The sample variance s 2
n lies in the sampling distribution S 2

n of sample variances. However, we do not

yet know whether s 2
n is an unbiased or biased estimate of the population variance ¾2.

Consider S 2
n =

1

n

nP
i=1

(Xi ¡ X)2

=
1

n

nP
i=1

³
X 2

i ¡ 2XiX + X
2
´

=
1

n

½
nP

i=1

X 2
i ¡ 2X

nP
i=1

Xi +
nP

i=1

X
2
¾

=
1

n

½
nP

i=1

X 2
i ¡ 2X(nX) + nX

2
¾

=
1

n

½
nP

i=1

X 2
i ¡ nX

2
¾

) E
¡
S 2
n

¢
= E

µ
1

n

½
nP

i=1

X 2
i ¡ nX

2
¾¶

=
1

n
E

µ
nP

i=1

X 2
i ¡ nX

2
¶

=
1

n

½
nP

i=1

E
¡
X 2

i

¢¡ nE
³
X

2
´¾

=
1

n

½
nP

i=1

¡
Var(Xi) + fE(Xi)g2

¢¡ n
³

Var(X) +
©

E(X)
ª2´¾

fVar(Xi) = E
¡
X 2

i

¢¡ fE(Xi)g2 from Theorem 3g

=
1

n

½
nP

i=1

(¾2 + ¹2) ¡ n

µ
¾2

n
+ ¹2

¶¾
fVar(Xi) = ¾2, E(Xi) = ¹

Var(X) =
¾2

n
, E(X) = ¹g

=
1

n

©
n¾2 + n¹2 ¡ ¾2 ¡ n¹2

ª
=
³
n¡ 1

n

´
¾2

6= ¾2

Hence S 2
n is a biased estimator of ¾2, and the sample variance s 2

n is a biased estimate of ¾2.
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86 STATISTICS AND PROBABILITY

For this reason, we define S 2
n¡1 =

³
n

n¡ 1

´
S 2
n

=

nP
i=1

(Xi ¡X)2

n¡ 1

Then E
¡
S 2
n¡1

¢
= E

³³
n

n¡ 1

´
S 2
n

´
=
³

n

n¡ 1

´
E
¡
S 2
n

¢ fTheorem 7g

=
n

(n¡ 1)
£ (n¡ 1)

n
£ ¾2

= ¾2

) S 2
n¡1 is an unbiased estimator of ¾2.

Suppose fx1, x2, ...., xng is a sample of size n of independent values taken from a population X

with mean ¹ and variance ¾2. x =
x1 + x2 + ::::+ xn

n
is the sample mean.

² S 2
n =

nP
i=1

(Xi ¡X)2

n
is a biased estimator of ¾2

and therefore s 2
n =

nP
i=1

(xi ¡ x)2

n
is a biased estimate of ¾2.

² S 2
n¡1 =

nP
i=1

(Xi ¡X)2

n¡ 1
is an unbiased estimator of ¾2

and therefore s 2
n¡1 =

nP
i=1

(xi ¡ x)2

n¡ 1
is an unbiased estimate of ¾2.

We note that:

² The values x1, x2, ...., xn are dependent, since x1 + x2 + ::::+ xn = nx. Thus given any n¡ 1

of these values, the nth value is completely determined. The calculation s 2
n¡1 is therefore based

on n ¡ 1 independent values, and we say the number of degrees of freedom of s 2
n¡1 is n ¡ 1.

² s 2
n 6 s 2

n¡1 for all n 2 Z +, n > 2.

Suppose X is a random variable with unknown mean ¹ and unknown variance ¾2.

Suppose f1:10, 2:5, 1:75, 3:45, 8:41, 6:75, 4:53g is a sample of independent values taken from X.

a Calculate an unbiased estimate of ¹.

b Calculate: i s 2
6 ii s 2

7

c Write down E(S 2
6 ) and E(S 2

7 ) in terms of ¾2.

d Of the estimates of ¾2 found in b, which is the preferred estimate? Why?

Example 44
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STATISTICS AND PROBABILITY 87

a The sample has size n = 7.

) x =
1:10 + 2:5 + 1:75 + 3:45 + 8:41 + 6:75 + 4:53

7
= 4:07 is an unbiased estimate of ¹.

b i s 2
n¡1 = s 2

6

=

7P
i=1

(xi ¡ x)2

6

¼ 7:21

ii s 2
n = s 2

7

= 6
7s

2
6

¼ 6:19

c E(S 2
6 ) = ¾2 and E(S 2

7 ) = 6
7¾

2.

d s 2
6 is the preferred estimate of ¾2 since s 2

6 is an unbiased estimate of ¾2, whereas s 2
7 is a

biased estimate of ¾2.

EXERCISE F

1 Suppose random samples of size 3 of independent values are taken from a population X with mean ¹

and variance ¾2.

a Show that T1 =
4X1 + 3X2 + 5X3

12
is an unbiased estimator of ¹.

b Show that T2 =
2X1 +X2 + 3X3

6
is an unbiased estimator of ¹.

c Which of T1 and T2 is the more efficient estimator? Why?

2 a Consider a population with mean ¹ and variance ¾2. Two independent random samples are

taken with sizes 10 and 25, and the sample means x10 and x25 respectively are calculated.

Which is the preferred estimate of ¹? Why?

b Hence explain why larger samples are better than smaller samples for estimating the population

mean ¹.

3 a Suppose T1 and T2 are two independent unbiased estimators of a parameter µ. Show that

T = aT1 + bT2 with a, b 2 R is an unbiased estimator of µ if and only if a + b = 1.

b If T1, T2, ...., Tn are independent unbiased estimators of a parameter µ, under what condition(s)

is T =
nP

i=1

aiTi, ai 2 R an unbiased estimator of µ?

4 A population with distribution X has mean ¹ and variance ¾2. Random samples fx1, x2g of

size 2 of independent values are taken from X.

Let T = ¸X1 + (1 ¡ ¸)X2, 0 6 ¸ 6 1, be an estimator of ¹.

a Show that T is an unbiased estimator of ¹.

b Use calculus to prove that the most efficient estimator of this form has ¸ = 1
2 .

5 Consider a population with unknown mean ¹ and unknown variance ¾2. Two independent random

samples fx1, x2, x3, x4g and fy1, y2, y3, y4, y5, y6, y7g are taken.

Let s 2
X =

4P
i=1

(xi ¡ x)2

3
and s 2

Y =

7P
i=1

(yi ¡ y)2

6
.

a Show that t =
3s 2

X
+ 6s 2

Y

9
is an unbiased estimate of ¾2.
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88 STATISTICS AND PROBABILITY

b If the two samples had size n and m respectively, write down an unbiased estimate t of ¾2 in

terms of n, m, s 2
X =

nP
i=1

(xi ¡ x)2

n¡ 1
, and s 2

Y =

mP
i=1

(yi ¡ y)2

m¡ 1
.

6 Consider a normal distribution X with unknown mean ¹

and unknown variance ¾2. Let X be the usual sample

mean estimator of ¹, using random samples of n independent

values.

a Show that E(X
2
) > ¹2.

b What does the result in a imply?

7 Suppose X and Y are independent random variables with E(X) = ¹X , Var(X) = ¾ 2
X , E(Y ) = ¹Y ,

and Var(Y ) = ¾ 2
Y .

A random sample of size n is taken from X, and the sample mean x and s 2
X =

nP
i=1

(xi ¡ x)2

n¡ 1
are

calculated.

Similarly, a sample of size m is taken from Y , and the sample mean y and s 2
Y =

mP
i=1

(yi ¡ y)2

m¡ 1
are

calculated.

a Let U = X + Y .

i Find E(U) and Var(U). ii Show that x + y is an unbiased estimate of E(U).

iii Show that s 2
X + s 2

Y is an unbiased estimate of Var(U).

b Let U = aX + bY , where a, b 2 R +.

i Find E(U) and Var(U).

ii Show that ax + by is an unbiased estimate of E(U).

iii Is as 2
X + bs 2

Y an unbiased estimate of Var(U)? Explain your answer.

8 Let f2, 1:5, 6:78, 4:25, 8:61, 3:2g be a random sample of independent values taken from a

population with unknown mean ¹ and unknown variance ¾2.

a Find an unbiased estimate of ¹. b Find an unbiased estimate of ¾2.

c Calculate the sample variance s 2
n .

d State the numeric relationship between your answers in b and c. Explain why we expect the

value in b to be larger than the value in c.

9 Let X » U(0, b) be the continuous uniform random variable with probability density function

f(x) =

(
1

b
0 6 x 6 b

0 otherwise.

a Calculate explicitly E(X).

b Let X be the sample mean estimator of E(X), calculated from random samples of size n of

independent values of X.

Show that 2X is an unbiased estimator of the parameter b, for all n 2 Z +.

From Theorem 3,

Var( ) = ¡fE(X)gEE(X
2
)

2
X
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STATISTICS AND PROBABILITY 89

10 Suppose a random sample of size n of independent values is taken from a population with known

mean ¹ and unknown variance ¾2.

Show that S 2
¹ =

nP
i=1

(Xi ¡ ¹)2

n
is an unbiased estimator of ¾2.

11 Suppose random independent samples of independent values are taken from the same population

with unknown mean ¹ and unknown variance ¾2.

The variance of each sample is calculated using s 2
n =

nP
i=1

(xi ¡ x)2

n
.

Sample A of size 4 has sample variance s 2
A = 3.

Sample B of size 9 has sample variance s 2
B = 5.

Sample C of size 20 has sample variance s 2
C = 2.

a Let t =
4s 2

A
+ 9s 2

B
+ 20s 2

C

30
.

i Calculate the estimate t. ii Show that t is an unbiased estimate of ¾2.

b If r such samples with sizes n1, n2, ...., nr have sample variances s 2
1 , s 2

2 , ...., s 2
r respectively,

suggest a formula for an unbiased estimate t of ¾2 in terms of s 2
1 , s 2

2 , ...., s 2
r .

12 Let X and Y be independent random variables with means ¹X and ¹Y respectively.

Let x be the sample mean of a random sample of independent values taken from X.

Let y be the sample mean of a random sample of independent values taken from Y .

Show that the product of sample means xy is an unbiased estimate of ¹X¹Y .

13 Consider a sample proportion bp » N
³
p,

p(1¡ p)

n

´
.

Let q = 1 ¡ p and bq = 1 ¡ bp, and let n be any constant, n 2 Z +.

a Find E(bp) and E(bq). b Calculate E

µbpbq
n

¶
.

c Hence explain why
bpbq
n

is a biased estimate of the variance
pq

n
of bp.

d Find an expression for an unbiased estimate of the variance
pq

n
of bp.
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90 STATISTICS AND PROBABILITY

It is often infeasible to calculate a population parameter. For example, consider calculating the mean

weekly salary of all Spaniards aged 18 and over.

In the previous section we looked at ways of estimating parameters, such as the population mean ¹, with

approximate single values called point estimates. We want to know how confident we can be that our

estimate is close to the true population parameter ¹.

A confidence interval estimate of a parameter, in this case the population mean ¹, is an interval of

values between two limits together with a percentage indicating our confidence that the true parameter ¹
lies in that interval.

The Central Limit Theorem is used as a basis for finding the confidence intervals.

For example, consider using sample means to estimate the population mean ¹.

By the CLT, we can assume that approximately 95%
of the sample means from samples of size n, lie

within 2 standard errors of the population mean.

E(X) = ¹, Var(X) =
¾2

n
, ¾

X
=

¾p
n

.

The diagram shows the distribution of sample means,

X.

Consider the statement “We are 95% confident that the mean weekly salary of all adult Spaniards is

between 637 euros and 691 euros”.

The statement indicates that the population mean ¹ most likely lies in an interval between 637 euros and

691 euros. In particular, the probability that the interval contains the parameter ¹ is 0:95 .

THE 95% CONFIDENCE INTERVAL

Consider the distribution X of all sample means x from samples of size n (large enough) taken

from population X with population mean ¹ and population standard deviation ¾. X has distribution

X » N

µ
¹,

¾2

n

¶
with mean ¹

X
= ¹ and standard deviation ¾

X
=

¾p
n

.

The corresponding standard normal random variable is Z =
X ¡ ¹

¾p
n

and Z » N(0, 1).

For a 95% confidence level we need to find a for

which P(¡a 6 Z 6 a) = 0:95 .... (¤).

Using the symmetry of the graph of the normal

distribution, the statement reduces to

P(Z < ¡a) = 0:025 or P(Z < a) = 0:975.

Using technology, we find that a ¼ 1:96 .

Therefore, in (¤), P(¡1:96 6 Z 6 1:96) = 0:95 or P(¡1:96 6
X ¡ ¹

¾p
n

6 1:96) = 0:95.

CONFIDENCE INTERVALS FOR MEANSG

¹

x1 x3x2

95 4. %

X¾2 X¾2

X

-a a

Area = 0.95

Area = 0.025Area = 0.025

0 Z

IB HL OPT 2ed
magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-Stat-Prob\IB_HL_OPT-Stat-Prob_01\090IB_HL_OPT-Stat-Prob_01.cdr Friday, 12 April 2013 5:47:06 PM BRIAN



STATISTICS AND PROBABILITY 91

Let x be any such sample mean.

¡1:96 6
x¡ ¹

¾p
n

6 1:96

) ¡1:96
¾p
n
6 x ¡ ¹ 6 1:96

¾p
n

) x ¡ 1:96
¾p
n
6 ¹ 6 x + 1:96

¾p
n

or equivalently ¹ ¡ 1:96
¾p
n
6 x 6 ¹ + 1:96

¾p
n

We therefore have the following equivalent results:

² 95% of all sample means x from samples of size n, lie between values ¹¡1:96
¾p
n

and ¹+1:96
¾p
n

inclusive.

² Given the sample mean x from one sample of size n, there is probability 0:95 that

¹ ¡ 1:96
¾p
n
6 x 6 ¹ + 1:96

¾p
n

, and probability 0:05 that x lies outside this interval.

² Given the sample mean x from one sample of size n, there is probability 0:95 that the true population

mean ¹ satisfies x ¡ 1:96
¾p
n

6 ¹ 6 x + 1:96
¾p
n

, and probability 0:05 that ¹ lies outside this

interval.

The 95% confidence interval for ¹ using sample mean x is x ¡ 1:96
¾p
n

6 ¹ 6 x+ 1:96
¾p
n

,

also denoted x § 1:96
¾p
n

or
h
x ¡ 1:96

¾p
n

, x + 1:96
¾p
n

i
.

We notice that:

² The exact centre or midpoint of the confidence interval is the value of x for the sample taken.

² The width of the 95% confidence interval for ¹ is 2 £ 1:96
¾p
n

.

lower limit upper limit

x ¡ 1:96
¾p
n

x + 1:96
¾p
n

1:96
¾p
n

1:96
¾p
n

x

¹¹ ¡ 1:96
¾p
n

¹ + 1:96
¾p
n

X

Area .= 0 95
) x 0.95.lies in this area with probability

¹¹ ¡ 1:96
¾p
n

¹ + 1:96
¾p
n

X

Total area .= 0 05
) x lies in one of these areas

with probability 0.05.
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9 9.5 10 10.5 11

¹= 10
n = 20
n = 50
n = 100
n = 200

The is the

amount of confidence we place

in being within the calculated

confidence interval.

confidence level

¹

92 STATISTICS AND PROBABILITY

² The use of 6 or < makes no difference in the calculation of the areas and therefore the probabilities

for continuous random variables, but we require 6 in the definition of the confidence interval for

later work on hypothesis testing.

OTHER CONFIDENCE INTERVALS FOR ¹

For a 90% confidence interval, P(Z < ¡a) = 0:05

or P(Z < a) = 0:95 .

Using technology, a ¼ 1:645. Since a is the

coefficient of
¾p
n

in the confidence interval:

The 90% confidence interval for ¹ is x ¡ 1:645
¾p
n

6 ¹ 6 x+ 1:645
¾p
n

Using this technique we obtain the following confidence intervals:

Confidence level a Confidence interval

90% 1:645 x ¡ 1:645
¾p
n
6 ¹ 6 x + 1:645

¾p
n

95% 1:960 x ¡ 1:960
¾p
n
6 ¹ 6 x + 1:960

¾p
n

98% 2:326 x ¡ 2:326
¾p
n
6 ¹ 6 x + 2:326

¾p
n

99% 2:576 x ¡ 2:576
¾p
n
6 ¹ 6 x + 2:576

¾p
n

We notice that:

² The sample mean x is the centre or midpoint of the confidence interval.

² The width of a confidence interval is 2 £ a £ ¾p
n

where a is given in the table above.

² Increasing the sample size n produces confidence intervals of shorter width.

For example, consider samples of different size but all with sample mean 10 and standard deviation 2.

The 95% confidence interval is 10 ¡ 1:960£ 2p
n

6 ¹ 6 10 +
1:960£ 2p

n
.

For various values of n we have:

n Confidence interval

20 9:123 6 ¹ 6 10:877

50 9:446 6 ¹ 6 10:554

100 9:608 6 ¹ 6 10:392

200 9:723 6 ¹ 6 10:277

-a a

Area = 0.90

Area = 0.05Area = 0.05

0 Z
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CONFIDENCE LEVELS AND INTERVALSINVESTIGATION 2

STATISTICS AND PROBABILITY 93

To obtain a greater understanding of confidence intervals and levels, click on the icon.

The random sampler demonstration calculates confidence intervals at various levels

of your choice (90%, 95%, 98%, or 99%) and counts the intervals which include the

population mean.

A pharmaceutical company produces tablets with masses that are normally distributed with standard

deviation 0:038 mg. A random sample of ten tablets was found to have mean mass 4:87 mg.

Calculate a 95% confidence interval for the mean mass of these tablets, based on this sample.

Even though n is relatively small, the fact that the mass X » N
¡
¹, (0:038)2

¢
is normally

distributed ensures that X » N

Ã
¹,

µ
0:038p

10

¶2!
by the CLT.

Since x = 4:87, a 95% confidence interval for the mean mass ¹ of a tablet is

4:87 ¡ 1:96 £ 0:038p
10

6 ¹ 6 4:87 + 1:96 £ 0:038p
10

which is 4:846 6 ¹ 6 4:894

We are 95% confident that the population mean lies in the interval 4:85 6 ¹ 6 4:89.

Confidence intervals can be obtained directly from your graphics calculator.

CONFIDENCE INTERVALS FOR ¹ WHEN ¾2 IS UNKNOWN

We usually do not know the population variance ¾2, so instead we use s 2
n¡1 as an unbiased estimate

of ¾2 as shown in Section F.

If X is normally distributed then X is normally distributed, even for small sample size n.

If X is not normally distributed, for sample size n large enough, the CLT

says X is approximately normally distributed.

Now if ¾2 is known, Z =
X ¡ ¹

¾p
n

» N(0, 1).

If ¾2 is unknown, we use s 2
n¡1 instead, and for X normally distributed,

the random variable T =
X ¡ ¹

sn¡1p
n

has a t-distribution, sometimes called

Student’s t-distribution.

Example 45

DEMO

GRAPHICS
CALCULATOR

INSTRUCTIONS

The Student’s -distribution

is named after William

Gosset who wrote under

the pseudonym “Student”.

t
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94 STATISTICS AND PROBABILITY

t-DISTRIBUTIONS

All t-distributions are symmetrical about the

origin. They are like standardised normal

bell-shaped curves, but with fatter tails. Each

curve has a single parameter º (pronounced

“new”) which is a positive integer. º is equal

to the number of degrees of freedom of the

distribution.

For a given value of º, consider the

t(º)-distribution. Denote by t® the value such

that P(T > t®) = ®, and equivalently

P(T < ¡t®) = ®.

Since s 2
n¡1 has been calculated with n¡1 degrees of freedom, we find in general that º = n¡ 1.

For example, for a sample of size 8, º = 7, and we write T » t(7).

The graphs illustrated are those of t(2), t(10) and Z » N(0, 1).

As º = n ¡ 1 increases, the curve of the t(n ¡ 1) distribution approaches the standardised normal

Z-curve.

Consider taking random samples of size n from a distribution X with mean ¹ and unknown variance ¾2.

If X is normally distributed, it can be shown that T =
X ¡ ¹

sn¡1p
n

follows a t-distribution with

n ¡ 1 degrees of freedom, and we write T » t(n ¡ 1).

In particular, when X is normally distributed with X » N(¹, ¾2), X is normally distributed for all

values of n.

) T =
X ¡ ¹

sn¡1p
n

has the t(n ¡ 1)-distribution with º = n ¡ 1 degrees of freedom.

Suppose n, and therefore º = n ¡ 1, is fixed.

Since P(¡t0:025 6
X ¡ ¹

sn¡1p
n

6 t0:025) = 0:95, the corresponding 95% confidence interval for ¹ is

standard normal curve
N ,(0 1)�

º = 10

º = 2

0

Area =® Area =®

-t® t®
T ~ t( )n

x ¡ sn¡1p
n

t0:025 6 ¹ 6 x +
sn¡1p

n
t0:025

with width 2
sn¡1p

n
t0:025 .

Other confidence intervals can be similarly defined.
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STATISTICS AND PROBABILITY 95

The fat content, in grams, of 30 randomly selected pies at the local bakery was determined and

recorded as:

15:1 14:8 13:7 15:6 15:1 16:1 16:6 17:4 16:1 13:9 17:5 15:7 16:2 16:6 15:1
12:9 17:4 16:5 13:2 14:0 17:2 17:3 16:1 16:5 16:7 16:8 17:2 17:6 17:3 14:7

Determine a 98% confidence interval for the average fat content of all pies made.

Using technology, x ¼ 15:897 and sn¡1 ¼ 1:365.

X is approximately normally distributed by CLT, since n = 30 is sufficiently large.

¾ is unknown and T =
X ¡ ¹

sn¡1p
n

is T » t(29).

The 98% confidence interval for ¹ is

x ¡ sn¡1p
n

t0:01 6 ¹ 6 x +
sn¡1p

n
t0:01

) 15:897 ¡ 1:365p
30

£ 2:462 6 ¹ 6 15:897 +
1:365p

30
£ 2:462

) 15:283 6 ¹ 6 16:511

Alternatively, using technology, a 98% confidence interval for ¹ is 15:28 6 ¹ 6 16:51.

A random sample of eight independent observations of a normal random variable gave
P

x = 72:8

and
P

x2 = 837:49 . Calculate:

a an unbiased estimate of the population mean

b an unbiased estimate of the population variance, and hence an estimate of the population

standard deviation

c a 90% confidence interval for the population mean.

a x =

P
x

n
=

72:8

8
= 9:1 and so 9:1 is an unbiased estimate of ¹.

b s 2
n =

P
x2

n
¡ x2 =

837:49

8
¡ 9:12 ¼ 21:876

An unbiased estimate of ¾2 is s 2
n¡1 =

n

n¡ 1
s 2
n =

8

7
£ 21:876 ¼ 25:00

) an estimate of ¾ ¼ 5:00

c Using x = 9:1 and sn¡1 = 5:00, we obtain the 90% confidence interval

for ¹.

x ¡ sn¡1p
n

t0:05 6 ¹ 6 x +
sn¡1p

n
t0:05

) 9:1 ¡ 5p
8

£ 1:895 6 ¹ 6 9:1 +
5p
8

£ 1:895

) 5:750 6 ¹ 6 12:45

Alternatively, using technology, 5:75 6 ¹ 6 12:45 fusing the t-distributiong

Example 47

Example 46

GRAPHICS
CALCULATOR

INSTRUCTIONS

STATISTICS

PACKAGE
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96 STATISTICS AND PROBABILITY

DETERMINING HOW LARGE A SAMPLE SHOULD BE

When designing an experiment in which we wish to estimate the population mean, the size of the sample

is an important consideration. Finding the appropriate sample size is a problem that can be solved using

the confidence interval.

Consider again Example 46 on the fat content of pies. Suppose the population standard deviation

¾ = 1:365 g. How large should a sample be if we wish to be 98% confident that the sample mean

will differ from the population mean by less than 0:3 grams?

We require ¡0:3 < ¹ ¡ x < 0:3

Now the 98% confidence interval for ¹ is

x ¡ 2:326
¾p
n
6 ¹ 6 x + 2:326

¾p
n

) ¡2:326
¾p
n
6 ¹ ¡ x 6 2:326

¾p
n

So, we need to find n such that

2:326
¾p
n
< 0:3

Consider
p
n =

2:326¾

0:3
=

2:326£ 1:365

0:3
¼ 10:583

) n ¼ 112:01

So, a sample of size at least 113 should be taken to achieve the required accuracy.

EXERCISE G.1

1 The mean ¹ of a population is unknown, but its standard deviation is 10. In order to estimate ¹, a

random sample of size n = 35 was selected. The mean of the sample was 28:9 .

a Find a 95% confidence interval for ¹.

b Find a 99% confidence interval for ¹.

c In changing the confidence level from 95% to 99%, how does the width of the confidence

interval change?

2 When performing a statistical analysis, we can choose the confidence level for a confidence interval.

Why would statisticians not always choose to use confidence intervals of at least 99%?

3 A random sample of size n is selected from a population with known standard deviation 11.

The sample mean is 81:6 .

a Find a 95% confidence interval for ¹ if: i n = 36 ii n = 100.

b In changing n from 36 to 100, how does the width of the confidence interval change?

4 The P% confidence interval for ¹ is x ¡ a

µ
¾p
n

¶
6 ¹ 6 x + a

µ
¾p
n

¶
.

If P = 95, then a = 1:960.

Find a if P is: a 99 b 80 c 85 d 96

Hint: Use the Z-distribution.

Example 48

The final answer for n

needs to be rounded up here.
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STATISTICS AND PROBABILITY 97

5 A random sample of size n = 50 is selected from a population with standard deviation ¾.

The sample mean is 38:7 .

a Find a 95% confidence interval for the mean ¹ if: i ¾ = 6 ii ¾ = 15.

b What effect does changing ¾ from 6 to 15 have on the width of the confidence interval?

6 Neville kept records of the time that he had to wait to receive telephone support for his accounting

software. During a six month period he made 167 calls and the mean waiting time was 8:7 minutes.

The shortest waiting time was 2:6 minutes and the longest was 15:1 minutes.

a Estimate ¾ using ¾ ¼ range ¥ 6. Use the normal distribution to briefly explain why this

estimate for ¾ is a reasonable one.

b Find a 98% confidence interval for estimating the mean waiting time for all telephone customer

calls for support.

7 A breakfast cereal manufacturer uses a machine to deliver the cereal into plastic packets. The quality

controller randomly samples 75 packets and obtains a sample mean of 513:8 grams with sample

standard deviation 14:9 grams. Construct a 99% confidence interval in which the true population

mean should lie.

8 A sample of 42 patients from a drug rehabilitation program showed a mean length of stay on the

program of 38:2 days with standard deviation 4:7 days. Estimate, with a 90% confidence interval,

the average length of stay for all patients on the program.

9 A sample of 60 yabbies was taken from a dam. The sample mean

weight of the yabbies was 84:6 grams, and the sample standard

deviation was 16:8 grams.

a For this yabbie population, find:

i the 95% confidence interval for the population mean

ii the 99% confidence interval for the population mean.

b What sample size is needed to be 95% confident that the

sample mean differs from the population mean by less than

5 g?

10 A random sample of ten independent observations of a normal random variable gave
P

x = 112:5

and
P

x2 = 1325:31 . Calculate:

a an unbiased estimate of the population mean

b an unbiased estimate of the population variance, and hence an estimate of the population

standard deviation

c a 90% confidence interval for the population mean.

11 A porridge manufacturer knows that the population variance ¾2 of the weight of contents of each

packet produced is 17:82 grams2. How many packets must be sampled to be 98% confident that the

sample mean differs from the population mean by less than 3 grams?

12 A sample of 48 patients from an alcohol rehabilitation program showed participation time on the

program had a sample variance of 22:09 days2.

a Use the sample variance to estimate the population standard deviation ¾.

b How many patients would have to be sampled to be 99% confident that the sample mean

number of days on the program differs from the population mean by less than 1:8 days?
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98 STATISTICS AND PROBABILITY

PAIRED DATA (THE CASE OF MATCHED PAIRS)

Often we are interested in comparing sets of results for the same (or similarly matched) group(s) of

individuals.

For example, we might consider:

² race times for a class of students at the start and finish of the athletics season

² test results for two classes of the same size, of students of similar ability.

In each case the data in the two samples obtained are matched in pairs. The two samples are not

necessarily independent, for example a matched pair of race times for a particular individual at the start

and finish of the athletics season. However, the individual scores in each sample must be independent

for our analysis to be meaningful.

We create a new single sample from the differences of the matched pairs and proceed with our usual

methods for a single sample.

For matched pairs, the population standard deviation ¾ will in general not be known. In such cases

it is necessary to approximate ¾ by sn¡1 from the sample, and use the confidence interval for the

t-distribution.

Prior to the 2004 Olympic Games an Institute of Sport took 20 elite athletes, and over a twelve

month period monitored their training for the 100 m sprint. Below is the “best” time for each

athlete in trials at the start and end of the year. The athletes have been recorded as the letters

A to T, and times are in seconds.

Athlete A B C D E F G H I J

Start 10:3 10:5 10:6 10:4 10:8 11:1 9:9 10:6 10:6 10:8

End 10:2 10:3 10:8 10:1 10:8 9:7 9:9 10:6 10:4 10:6

Athlete K L M N O P Q R S T

Start 11:2 11:4 10:9 10:7 10:7 10:9 11:0 10:3 10:5 10:6

End 10:8 11:2 11:0 10:5 10:7 11:0 11:1 10:5 10:3 10:2

a Create i 95% ii 90% confidence intervals for the average time difference

(start time ¡ end time) for all athletes in the relevant population.

b The Institute of Sport claims their training program has improved sprint times. Do you agree?

Explain your answer.

a Let U = X1 ¡ X2, where X1 represents the ‘start’ time and X2 represents the ‘end’ time.

A B C D E F G H I J

u 0:1 0:2 ¡0:2 0:3 0 1:4 0 0 0:2 0:2

K L M N O P Q R S T

u 0:4 0:2 ¡0:1 0:2 0 ¡0:1 ¡0:1 ¡0:2 0:2 0:4

Here n = 20, u = 0:155, and s 2
n¡1 = (0:344 085 36)2.

¾ is unknown and T =
U ¡ ¹

sn¡1p
20

is T » t(19).

Example 49
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STATISTICS AND PROBABILITY 99

i The 95% CI for ¹ is ¡0:006 04 6 ¹ 6 0:316 .

ii The 90% CI for ¹ is 0:021 96 6 ¹ 6 0:2880 .

b An improvement in times corresponds to ¹ > 0.

There is sufficient evidence at the 90% level that ¹ > 0, since ¹ = 0 lies outside the

confidence interval, and ¹ is given to be positive.

There is insufficient evidence at the 95% level to suggest that ¹ > 0, since the confidence

interval contains negative values.

Thus we would agree with the Institute of Sport’s claim at the 90% level, but not at the

95% level.

EXERCISE G.2

1 A group of 12 year old children were asked to throw

a baseball as fast as they could. A radar was used to

measure the speed of each throw. One year later, the

same group was asked to repeat the experiment. The

results are shown below, with the children labelled A to

K, and the speeds given in km h¡1.

Age A B C D E F G H I J K

12 76 81 59 67 90 74 78 71 69 72 82

13 79 82 66 72 93 76 77 82 75 77 86

a Find confidence intervals for the average throwing speed difference for all children from age 12

to age 13, using a: i 95% confidence level ii 90% confidence level.

b A sports commission report suggests that an average throwing speed difference of 5 km h¡1

is expected between these ages. Based on these experimental results, do you agree with the

sports commission report?

2 Pairs of identical seedlings were grown with two types of compost, one with Type 1 compost and

one with Type 2. The pairs were grown side by side in various garden plots. After a period of time,

the height (in cm) of each seedling was measured.

Pair A B C D E F G H

Type 1 12:1 14:6 10:1 8:7 13:2 15:1 16:5 14:6

Type 2 12:3 15:2 9:9 9:5 13:4 14:9 17:0 14:8

a Determine unbiased estimates of the mean and variance of the difference

d = (height Type 2) ¡ (height Type 1) for this paired data.

b Calculate a confidence interval for ¹, the mean improved growth when using Type 2 compost

instead of Type 1 compost, with confidence level: i 95% ii 99%.

c The manufacturer of Type 2 compost guarantees it will improve the growth of seedlings more

than Type 1 compost. Comment on this claim based on your calculations.

d A confidence interval for ¹ is calculated as [¡0:032, 0:557].

Find, accurate to one decimal place, the % confidence level for this confidence interval.
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100 STATISTICS AND PROBABILITY

Visitors to the West Coast of the South Island of New Zealand

are often bitten by sandflies.

According to its label, a new product claims to repel sandflies

with “average protection time of more than 6 hours”. The best

products currently available protect for six hours.

The government department for tourism wishes to preserve the

tourist trade, and therefore needs to provide the best possible

advice to tourists. How can they test the manufacturer’s claim?

HYPOTHESES

A statistical hypothesis is a statement about the value of a population parameter. The parameter could

be a population mean ¹, or a proportion p.

When a claim is made about a product, the claim can be tested statistically.

The statistician begins by formulating a null hypothesis, H0, that a parameter of the population takes

a definite value, for example, that the population mean ¹ has value ¹0. This statement is assumed to

be true unless sufficient evidence is provided for it to be rejected. If the hypothesis is not rejected, we

accept that the population mean is ¹0, so the null hypothesis is a statement of no difference.

The alternative hypothesis, H1, is that there is a difference between ¹ and ¹0. We will only accept this

hypothesis if there is evidence to support it.

The statistician then gathers a random sample from the population in order to test the null hypothesis. If

the test shows that H0 should be rejected, then its alternative H1 is accepted.

ONE-TAILED AND TWO-TAILED ALTERNATIVE HYPOTHESES

Given the null hypothesis H0: ¹ = ¹0, the alternative hypothesis could be:

² H1: ¹ > ¹0 (one-tailed)

² H1: ¹ < ¹0 (one-tailed)

² H1: ¹ 6= ¹0 (two-tailed, as ¹ 6= ¹0 could mean ¹ > ¹0 or ¹ < ¹0).

For example, consider the case of the sandfly repellent:

² If the manufacturer of the new brand wants evidence that the new product is

superior in protection time, the hypotheses would be:

H0: ¹ = 6 fthe new product has the same effectiveness as the old onesg
H1: ¹ > 6 fthe new product protects for longer than the old onesg.

² If the competitor wants evidence that the new product has inferior protection

time, the hypotheses would be:

H0: ¹ = 6 fthe new product has the same effectiveness as the old onesg
H1: ¹ < 6 fthe new product protects for less time than the old onesg.

SIGNIFICANCE AND HYPOTHESIS TESTINGH

The null hypothesis H0

always states ¹ equal to

specific value.a
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STATISTICS AND PROBABILITY 101

² If a researcher studying all products on the market wants to show that the new product differs

from the old ones, but is not concerned whether the protection time is more or less, the hypotheses

would be:

H0: ¹ = 6 fthe new product has the same effectiveness as the old onesg
H1: ¹ 6= 6 fthe new product has different effectiveness from the old onesg.

ERROR TYPES

There are two types of error in decision making:

² A Type I error is when we make the mistake of rejecting the null hypothesis H0, when H0 is in

fact true.

² A Type II error is when we make the mistake of accepting H0 when H0 is in fact not true.

For example, if a coin is fair then the population proportion of heads it produces is p = 0:5 .

² A Type I error would be deciding a fair coin is biased because of the event of obtaining 10 heads

in 10 tosses. Although improbable, it is still possible to obtain this result with a fair coin.

² A Type II error would be accepting that a biased coin is fair (when it is in fact biased) because of

the event of obtaining 7 heads in 10 tosses. This event can occur with a fair coin with reasonable

probability, but the coin used may in fact be biased towards heads.

EXERCISE H.1

1 Explain what is meant by:

a a Type I error b a Type II error

c the null hypothesis d the alternative hypothesis.

2 a An experimenter wishes to test H0: ¹ = 20 against H1: ¹ > 20.

i If the mean is actually 20 but the experimenter concludes that the mean exceeds 20, what

type of error has been made?

ii If the population mean is actually 21:8 but the experimenter concludes that the mean is 20,

what type of error has been made?

b A researcher wishes to test H0: ¹ = 40 against H1: ¹ 6= 40. What type of error has been

made if she concludes that:

i the mean is 40 when it is in fact 38:1 ii the mean is not 40 when it actually is 40?

3 In many countries where juries are used in trials, “a person

is presumed innocent until proven guilty”. In this case

the null hypothesis would be H0: the person on trial is

innocent.

a What would be the alternative hypothesis H1?

b If an innocent person is judged guilty, what type of

error has been made?

c If a guilty person is judged as innocent, what type of

error has been made?

4 A researcher conducts experiments to determine the effectiveness of two anti-dandruff shampoos X

and Y. He tests the hypotheses:

H0: X and Y have the same effectiveness H1: X is more effective than Y.

What decision would cause:

a a Type I error b a Type II error?
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102 STATISTICS AND PROBABILITY

5 Current torch globes have a mean life of 80 hours. Globe Industries are considering mass production

of a new globe they believe will last longer.

a If Globe Industries wants to demonstrate that their new globe lasts longer, what set of hypotheses

should they consider?

b The new globe costs less to make, so Globe Industries will adopt it unless it has an inferior

lifespan to the old type. What set of hypotheses would they now consider?

6 The top underwater speed of submarines produced at the

dockyards is 26:3 knots. The engineers modify the design

to reduce drag and believe that the maximum speed will

now be considerably increased. What set of hypotheses

should they consider to test whether or not the new design

has produced a faster submarine?

HYPOTHESIS TESTING FOR THE MEAN WITH ONE SAMPLE WHERE ¾ IS

KNOWN

Consider a population X with unknown mean ¹ and known standard deviation ¾.

Suppose we take a random sample of size n (large) of independent values of X, and calculate the sample

mean x.

We wish to test whether or not X has mean ¹ equal to a specific value ¹0, based on this one sample

mean x. The test can be performed as a two-tailed test, or as a one-tailed test.

In either case we begin by assuming the null hypothesis H0: ¹ = ¹0. If this holds, then X » N

µ
¹0,

¾2

n

¶
,

and therefore Z =
X ¡ ¹0

¾p
n

has distribution N(0, 1), called the Null distribution.

For the given sample, we calculate z¤ =
x¡ ¹0

¾p
n

, called the test statistic.

Given the distributions for X and Z, we can calculate probabilities for where we expect a sample mean x
to lie.

If x lies in an extreme outer tail of the X-distribution, or equivalently z¤ lies in an extreme outer tail

of the Z-distribution, then either we have an extremely unlikely sample, or else the null hypothesis

is incorrect. In this case we need to make a decision on whether or not to reject H0 and accept the

alternative hypothesis H1.

EXAMPLE TWO-TAILED TEST

Consider a two-tailed test with null hypothesis

H0: ¹ = ¹0 and alternative hypothesis

H1: ¹ 6= ¹0. Assuming the population

mean is indeed ¹0, we know from the 95%

confidence interval that for 95% of samples

of size n, the sample mean x will satisfy

¹0 ¡ 1:96
¾p
n
6 x 6 ¹0 + 1:96

¾p
n

.

¹ ¡ 1:96
¾p
n

¹ + 1:96
¾p
n

X

Area .= 0 95

We are % confident that lies in this interval95 x
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STATISTICS AND PROBABILITY 103

For the remaining 5% of samples, x will lie outside the interval [¹0 ¡ 1:96
¾p
n

, ¹0 + 1:96
¾p
n

] in the

outer tails of the distribution. We call these tails the critical region of the X-distribution, with boundary

critical values ¹0 ¡ 1:96
¾p
n

and ¹0 + 1:96
¾p
n

as shown:

If our particular sample mean x lies in the critical region, we can be 95% confident that ¹0 is not the

population mean. There is 5% uncertainty, so we make the decision, at the 5% level of significance, to

reject the null hypothesis H0 and accept the alternative hypothesis H1.

We note that there is probability 0:05 of making a Type I error. Although improbable, it is still possible

that ¹0 is the true population mean, and we happened to select a random sample whose mean x had very

low probability.

EXAMPLE ONE-TAILED TESTS

In the case of a one-sided alternative hypothesis, the critical region will be one tail only, and there is

only one critical value.

To calculate the critical value for a 5% level of significance, we need to find k such that P(Z > k) = 0:05 .

We find k ¼ 1:645 .

Hence, for a 5% level of significance, we have:

One-tailed (right) test

H0: ¹ = ¹0 H1: ¹ > ¹0

One-tailed (left) test

H0: ¹ = ¹0 H1: ¹ < ¹0

2 5%

2 5%

:

:

of sample means lie in the

left section of the critical region.

of sample means lie in the

right section of the critical region.

X
¹0 ¡ 1:96

¾p
n

¹0 + 1:96
¾p
n

critical region

¹0

Area .= 0 025 Area .= 0 025

¹0 ¹0

+ 1:645
¾p
n

¹0

X

- 1:645
¾p
n

¹0

X

Area .= 0 05 Area .= 0 05

The level of significance determines

the area of the critical region and

therefore the critical values.
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104 STATISTICS AND PROBABILITY

TESTING PROCEDURE

We have seen that the distribution of the test statistic z¤ =
x¡ ¹0

¾p
n

is Z » N(0, 1), called the null

distribution.

CRITICAL REGIONS

For a level of significance ® which is the area of the critical region, we can calculate the critical value(s):

One-tailed (right) test

H0: ¹ = ¹0 H1: ¹ > ¹0

Find z® by solving

P(Z > z®) = ®.

For example, z0:01 ¼ 2:326

One-tailed (left) test

H0: ¹ = ¹0 H1: ¹ < ¹0

Find ¡z® by solving

P(Z 6 ¡z®) = ®.

For example,

¡z0:01 ¼ ¡2:326

Two-tailed test

H0: ¹ = ¹0 H1: ¹ 6= ¹0

Find z®

2

by solving

P(Z > z®

2

) =
®

2
.

For example, z®

2

¼ 2:576

and ¡z®

2

¼ ¡2:576

In each case,

x lies in the critical region of the X-distribution , z¤ lies in the critical region of the null distribution.

p-VALUES

Given our one sample mean x and corresponding test statistic z¤, we define the p-value to be the

following probability:

One-tailed (right) test

p = P(Z > z¤)

One-tailed (left) test

p = P(Z 6 z¤)

Two-tailed test

p = P(Z > jz¤j) + P(Z 6 ¡ jz¤j)
= 2P(Z > jz¤j) fby symmetryg

Z-z®
Z

®z

® = area of critical region

Z-z ®

2

®

2

z

® = area of critical region
® = total area of

critical region

Z
z¤ Z¤-z |z |*-|z |*

Z

area = p area = p
total area = p
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STATISTICS AND PROBABILITY 105

DECISION MAKING

We decide to reject H0 in favour of H1 if any of the following (equivalent) properties hold:

(1) The test-statistic z¤ =
x ¡ ¹0

¾p
n

lies in the critical region of the null distribution Z » N(0, 1)

One-tailed (right) test

H0: ¹ = ¹0 H1: ¹ > ¹0

For example, for ® = 0:01,

z¤ > z0:01 ¼ 2:326

One-tailed (left) test

H0: ¹ = ¹0 H1: ¹ < ¹0

For example, for ® = 0:01,

z¤ < ¡z0:01 ¼ ¡2:326

Two-tailed test

H0: ¹ = ¹0 H1: ¹ 6= ¹0

For example, for ® = 0:01,

z¤ < ¡z0:005 ¼ ¡2:576

or z¤ > z0:005 ¼ 2:576

(2) The p-value is strictly less than ®

This is a comparison of the area of the tail(s) defined by z¤ (or equivalently the area of the tail(s)

defined by x), with the area of the critical region.

One-tailed (right) test

Reject if p = P(Z > z¤) < ®

One-tailed (left) test

Reject if p = P(Z 6 z¤) < ®

Two-tailed test

Reject if p = 2P(Z > jz¤j) < ®

(3) x lies in the critical region of the X-distribution

One-tailed (right) test

For example, for ® = 0:01,

x > ¹0 + 2:326
¾p
n

One-tailed (left) test

For example, for ® = 0:01,

x < ¹0 ¡ 2:326
¾p
n

Two-tailed test

For example, for ® = 0:01,

x < ¹0 ¡ 2:576
¾p
n

or x > ¹0 + 2:576
¾p
n

Otherwise, we do not reject H0 as there is insufficient evidence to reject it. Note that although we

accept H0, we have not actually proved H0. Rather, we simply have not found sufficient evidence

against H0.

Z-z®
z¤

Z-z®

2

®

2

z

z*

or

z*

Z
®z

z¤

area = ® area = ®
total area = ®

X

x+¹0
¾p
n®z

X

-¹0
¾p
n®zx

X
x

¹0
¾p
n

®

2

- z ¹0
¾p
n

®

2

+ z

area = ® area = ®
total area = ®

x
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106 STATISTICS AND PROBABILITY

HYPOTHESIS TESTS AND CONFIDENCE INTERVALS

For two-tailed tests, we can check the result of the hypothesis

test using the appropriate confidence interval.

For example,

For a two-tailed hypothesis test at the 5% level of significance,

we accept H0 if and only if ¹0 lies within the 95% confidence

interval for ¹.

USING A GRAPHICS CALCULATOR

Click on the icon to obtain instructions for TI and Casio calculators.

Be aware that your calculator may use different notation to that used in IB.

For example:

² with Casio calculators, sn¡1 is sx

² with TI calculators, sn¡1 is Sx.

REPORTING ON A HYPOTHESIS TEST

There are effectively 7 steps in reporting on a hypothesis test:

(1) Hypotheses: State the null and alternative hypotheses. (Specify whether it is a one- or

two-tailed test.)

(2) Null distribution: State the null distribution of the test statistic.

(3) Test statistic: Calculate the test statistic from the sample evidence.

(4) Decision rule: State the decision rule based on the significance level ®.

(5) Evidence: Find the p-value using your graphics calculator or find the critical values and

the critical region.

(6) Decision: Make your decision to reject or not reject H0, based on the significance

level.

(7) Conclusion: Write a brief conclusion giving your decision some contextual meaning.

The manager of a restaurant chain goes to a seafood wholesaler and inspects a large catch of over

50 000 prawns. It is known that the population standard deviation is 4:2 grams. She will buy the

catch if the mean weight exceeds 55 grams per prawn. A random sample of 60 prawns is taken,

and the mean weight is 56:2 grams. Is there sufficient evidence at a 5% level to reject the catch?

Suppose the weight of prawns has distribution X with mean ¹ and ¾ = 4:2 g.

) X » N

µ
¹,

(4:2)2

60

¶

Example 50

GRAPHICS
CALCULATOR

INSTRUCTIONS

This rule is not true for

one-tailed tests.
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STATISTICS AND PROBABILITY 107

(1) Hypotheses: H0: ¹ = 55 H1: ¹ > 55 (one-tailed test)

(2) Null distribution: Z-distribution (¾ = 4:2 g is known)

(3) Test statistic: z¤ =
56:2¡ 55

4:2p
60

¼ 2:213

(4) Decision rule: Reject H0 if the p-value is

less than 0:05 .

or Reject H0 if z¤ lies in the critical

region of Z.

(5) Evidence: p-value = P(Z > 2:213)

¼ 0:0134

or

(6) Decision: Since the p-value is less

than 0:05, we reject H0.

or Since z¤ lies in the critical region,

we reject H0.

(7) Conclusion: Sufficient evidence exists at the 5% level to accept H1, that the mean

weight exceeds 55 grams. So, on this evidence, the manager should

purchase the catch.

EXERCISE H.2

1 Show that if x ¡ 1:96
¾p
n
6 ¹ 6 x + 1:96

¾p
n

then ¹ ¡ 1:96
¾p
n
6 x 6 ¹ + 1:96

¾p
n

.

2 Find z® and z®

2

for: a ® = 0:05 b ® = 0:01

3 A population has known variance ¾2 = 15:79 . A sample of size 36 is taken and the sample mean

x = 23:75 . We are required to test the hypothesis H0: ¹ = 25 against H1: ¹ < 25.

a Find:

i the test statistic ii the null distribution iii the p-value.

b What decision should be made at a 5% level using:

i the test statistic ii the p-value?

4 For each of the following hypotheses, find the critical region for the test statistic for the standard

normal distribution with n > 30 and level of significance: i ® = 0:05 ii ® = 0:01

a H0: ¹ = 40

H1: ¹ > 40

b H0: ¹ = 50

H1: ¹ < 50

c H0: ¹ = 60

H1: ¹ 6= 60

5 A statistician believes that a population which has a standard deviation of 12:9, has a mean ¹ that is

greater than 80. To test this, he takes a random sample of 200 measurements, and the sample mean

is 83:1 . He then performs a hypothesis test with significance level ® = 0:01 .

a Write down the null and alternative hypotheses.

b State the null distribution. c Find the value of the test statistic.

d State the decision rule. e Find and illustrate the critical region.

f Make a decision to reject or not reject H0. g State the conclusion for the test.

Z

z = 2.213¤
z0.05

= 1.645

area .= 0 05
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108 STATISTICS AND PROBABILITY

6 Bags of salted cashew nuts display net contents 100 g. The manufacturer knows that the standard

deviation of the population is 1:6 g.

A customer claims that the bags have been lighter in recent purchases, so the factory quality control

manager decides to investigate. He samples 40 bags and finds that their mean weight is 99:4 g.

Perform a hypothesis test at the 5% level of significance, using critical regions, to determine whether

the customer’s claim is valid.

7

a Perform a two-tailed hypothesis test at the 5% level of significance, using p-values to determine

whether the herd fineness has changed.

b Use a 95% confidence interval to check the result of your test.

8 A machine packs sugar into 1 kg bags. It is known that

the masses of the bags of sugar are normally distributed

with a variance 2:25 g. A random sample of eight filled

bags was taken and the masses of the bags measured to the

nearest gram. Their masses in grams were: 1001, 998,

999, 1002, 1001, 1003, 1002, 1002. Perform a test at the

1% level, to determine whether the machine overfills the

bags.

HYPOTHESIS TESTS WHERE THE POPULATION VARIANCE ¾2 IS

UNKNOWN

With ¾2 unknown, we can still define the null and alternative hypotheses as before. The distribution of

X is N

µ
¹0,

¾2

n

¶
.

However, since ¾2 is unknown, we use the unbiased estimate s 2
n¡1 of ¾2.

We define the test statistic t¤ =
x¡ ¹0
sn¡1p

n

which lies in the distribution t(n ¡ 1) called the null

distribution for this case.

The critical region for t¤ and associated critical values in the t(n¡1)-distribution need to be calculated

for the given value of n and given significance level ®.

One-tailed (right) test

H0: ¹ = ¹0 H1: ¹ > ¹0

For ® = 0:01,

t® = invstudt (0:01, n ¡ 1)

One-tailed (left) test

H0: ¹ = ¹0 H1: ¹ < ¹0

For ® = 0:01,

¡t® = invstudt (0:99, n ¡ 1)

= ¡invstudt (0:01, n ¡ 1)

Two-tailed test

H0: ¹ = ¹0 H1: ¹ 6= ¹0

For ® = 0:01,

t®

2

= invstudt (0:005, n ¡ 1)

T
®t

area = ®

-t®

area = ®

T -t®

2

®

2

t

total area = ®

T

An alpaca breeder wants to produce fleece which is extremely fine. In 2008, his herd had mean

fineness 22:3 microns with standard deviation 2:89 microns. The standard deviation remains

relatively constant over time. In 2012, a sample of 80 alpacas from the herd was randomly selected,

and the mean fineness was 21:2 microns.
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STATISTICS AND PROBABILITY 109

We decide to reject H0 in favour of H1 if either of the following (equivalent) properties hold:

(1) The test statistic t¤ =
x ¡ ¹0

sn ¡ 1p
n

lies in the critical region of the t(n¡ 1)-distribution for the

given level of significance ®:

One-tailed (right) test

t¤ > t®

One-tailed (left) test

t¤ < ¡t®

Two-tailed test

t¤ < ¡t®

2

or t¤ > t®

2

(2) The p-value is strictly less than ®

This is a comparison of the area of the tail(s) defined by t¤ with the area of the critical region.

The p-value in this case is defined as follows:

One-tailed (right) test

p = P(T > t¤)

One-tailed (left) test

p = P(T 6 t¤)

Two-tailed test

p = P(T > jt¤j) + P(T 6 ¡ jt¤j)
= 2P(T > jt¤j) fby symmetryg

Otherwise, we do not reject H0 as there is insufficient evidence to do so, and so we accept H0.

In 2010, the average house price in a suburb was $235 000. In 2012, a random sample of 200 houses

in the suburb was taken. The sample mean was x = $215 000, and an estimate of the standard

deviation was sn¡1 = $30 000.

Is there evidence at the 5% level that the average house price has changed?

Suppose the price of a house has distribution X with mean ¹ and ¾2 unknown.

) X » N

µ
¹,

¾2

200

¶
.

(1) Hypotheses: H0: ¹ = 235000 H1: ¹ 6= 235000 (two-tailed test)

(2) Null distribution: t-distribution with º = 199, sn¡1 = 30 000 (¾2 is unknown)

(3) Test statistic: t¤ =
x¡ ¹

sn¡1p
n

=
215 000¡ 235 000

30 000p
200

¼ ¡9:428 with 199 degrees of freedom.

(4) Decision rule: or Reject H0 if t¤ lies in the critical

region of t.

Example 51

T
®t -t®

T -t®

2

®

2

t T
t¤ t¤ t¤ t¤

¡ jt¤j jt¤j

total area = p
area = p area = p

T T T
t¤ t¤

Reject H0 if the p-value is

less than 0:05 .
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110 STATISTICS AND PROBABILITY

(5) Evidence: p-value

= P(T > 9:43)

+ P(T 6 ¡9:43)

¼ 1:11 £ 10¡17

or

(6) Decision: Since the p-value is less

than 0:05, we reject H0.

or Since t¤ lies in the critical region,

we reject H0.

(7) Conclusion: Sufficient evidence exists at the 5% level of significance, to suggest that

¹ 6= $235 000. We conclude that the average house price in 2012 was

different to the average house price in 2010.

Fabtread manufacture motorcycle tyres. Under normal test conditions, the average stopping time

for motorcycles travelling at 60 km/h is 3:12 seconds. The production team have recently designed

and manufactured a new tyre tread. They took 41 stopping time measurements under the usual

test conditions, and found that the mean time was 3:03 seconds with sample standard deviation

0:27 seconds.

Is there sufficient evidence, at a 1% level, to support the team’s belief that they have improved the

stopping time?

Suppose the motorcycle stopping time with the new tread has distribution X with mean ¹ and

unknown ¾.

) X » N

µ
¹,

¾2

41

¶
.

(1) Hypotheses: H0: ¹ = 3:12 H1: ¹ < 3:12 (one-tailed test)

(2) Null distribution: t-distribution with º = 40, s 2
n = 0:272 (¾2 is unknown)

(3) Test statistic: s 2
n¡1 =

n

n¡ 1
£ s 2

n =
41

40
£ 0:272 ¼ 0:074 72

) sn¡1 ¼ 0:273 35

) t¤ =
3:03¡ 3:12

0:273 35p
41

¼ ¡2:108

(4) Decision rule: Reject H0 if the p-value is

less than 0:01 .

or Reject H0 if t¤ lies in the critical

region of t.

(5) Evidence: p-value = P(T 6 ¡2:108)

¼ 0:020 67

or

(6) Decision: Since the p-value is not

less than 0:01, we do not

reject H0.

or Since t¤ is not in the critical region,

we do not reject H0.

Example 52

T

area .= 0 025 area .= 0 025

-t0.025 ¼ -1.972

t0.025

¼ 1.972t¤ ¼ -9.43

t = -2.108¤

area = 0.01

T

-t = -2.420.01
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STATISTICS AND PROBABILITY 111

(7) Conclusion: There is insufficient evidence for us to reject H0, so at the 1% level of

significance, we retain H0. We conclude that there is not an improvement

in stopping time due to the new tread pattern.

EXERCISE H.3

1 Suppose º = 15. Find t® and t®

2

for: a ® = 0:05 b ® = 0:01

2 A population has unknown variance ¾2. A sample of size 24 is taken and the sample mean x = 17:14
with standard deviation 4:365 . We are required to test the hypothesis H0: ¹ = 18:5 against

H1: ¹ 6= 18:5 .

a Find:

i the test statistic ii the null distribution iii the p-value.

b What decision should be made at a 5% level using:

i the test statistic ii the p-value?

3 A liquor store claimed that the mean price of a bottle of wine had fallen from what it was 12 months

previously. Records show that 12 months ago the mean price was $13:45 for a 750 mL bottle. A

random sample of prices of 389 different bottles of wine is now taken from the store. The mean

price for the sample is $13:30, with sample standard deviation $0:25 . Is there sufficient evidence

at a 2% level to reject the claim? In your answer state:

a the null and alternative hypotheses b the null distribution

c the test statistic d the p-value

e your conclusion.

4 A machine is used to fill bottles with 500 mL of water. Ten random measurements of the volumes

put in different bottles give a mean of 499 mL with standard deviation 1:2 mL. Assuming that

the volumes of water are normally distributed, test at the 1% level whether there is a significant

difference from the expected value.

5 While peaches are being canned, 250 mg of preservative

is supposed to be added by a dispensing device. To check

the machine, the quality controller obtains 60 random

samples of dispensed preservative. She finds that the mean

preservative added was 242:6 mg with sample standard

deviation 7:3 mg.

a At a 5% level, is there sufficient evidence that the

machine is not dispensing with mean 250 mg? Set

out your solution in full, giving either a p-value or a

critical value, and state your decision.

b Use a confidence interval to verify your answer.

6 Free range chickens are found to have mean meat protein content of 24:9 units per kg. 50 chickens

are randomly chosen from a battery cage. These chickens are fed special meals which are supposed

to increase their protein content. Following the feeding program, the sample had mean meat protein

content 26:1 units/kg with standard deviation 6:38 units/kg.

At a 5% level of significance, test the claim that the chickens on the feeding program have a higher

meat protein content.
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112 STATISTICS AND PROBABILITY

7 The management of a golf club claimed that the mean

income of its members was in excess of E95 000,

so its members could afford to pay increased annual

subscriptions. To show that this claim was invalid, the

members sought the help of a statistician. The statistician

was to examine the current tax records of a random sample

of members fairly, and test the claim at a 0:02 significance

level. The statistician found, from his random sample of

113 club members, that the average income was E96 318
with standard deviation E14 268.

a Find an unbiased estimate of the population standard

deviation.

b State the null and alternative hypotheses when testing this claim.

c State the null distribution.

d Find the test statistic.

e Find the p-value when testing the null hypothesis.

f Find the critical region for rejection of the null hypothesis, and sketch it.

g State whether or not there is sufficient evidence to reject management’s claim.

h Would the statistician be committing a Type I or Type II error if his assertion was incorrect?

i Find a 99% confidence interval for the mean income of members, and comment on your result.

Explain why we check with a 99% confidence interval.

MATCHED PAIRS

Consider again the Institute of Sport problem in Example 49 on page 98.

Prior to the 2004 Olympic Games an Institute of Sport took 20 elite athletes, and over a twelve

month period monitored their training for the 100 m sprint. Below is the “best” time for each

athlete in trials at the start and end of the year. The athletes have been recorded as the letters

A to T, and times are in seconds.

Athlete A B C D E F G H I J

Start 10:3 10:5 10:6 10:4 10:8 11:1 9:9 10:6 10:6 10:8

End 10:2 10:3 10:8 10:1 10:8 9:7 9:9 10:6 10:4 10:6

Athlete K L M N O P Q R S T

Start 11:2 11:4 10:9 10:7 10:7 10:9 11:0 10:3 10:5 10:6

End 10:8 11:2 11:0 10:5 10:7 11:0 11:1 10:5 10:3 10:2

Conduct a hypothesis test at the 5% level of significance, to determine whether the program has

significantly improved the athletes’ performance.

Let U = X1 ¡ X2 where X1 represents the time before and X2 represents the time after the

program.

A B C D E F G H I J

u 0:1 0:2 ¡0:2 0:3 0 1:4 0 0 0:2 0:2

Example 53
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STATISTICS AND PROBABILITY 113

K L M N O P Q R S T

u 0:4 0:2 ¡0:1 0:2 0 ¡0:1 ¡0:1 ¡0:2 0:2 0:4

Here n = 20, u = 0:155, and sn¡1 = 0:344 085 36.

(1) Null hypotheses: H0: ¹ = 0 (times have not improved)

H1: ¹ > 0 (one-tailed test as testing to see if times have improved)

(2) Null distribution: t-distribution (¾2 is unknown)

(3) Test statistic: t¤ =
u¡ ¹

sn¡1p
n

=
0:155¡ 0

0:0769
¼ 2:014 56

(4) Decision rule: Reject H0 if p-value is less than 0:05

(5) Evidence: p-value ¼ P(T > 2:014 56) ¼ 0:029 16

(6) Decision: Since the p-value is less than 0:05, we

reject H0. We observe that the test

statistic t¤ ¼ 2:014 56 lies inside the

critical region.

(7) Conclusion: There is sufficient evidence at the 5%
level, to conclude that the sprint times

of the athletes have improved after the

implementation of the program.

EXERCISE H.4

1 A mathematics coaching school claims to significantly increase students’ test results over a period

of several coaching sessions. To test their claim a teacher tested 12 students prior to receiving

coaching and recorded their results. The students were not given the answers or their results. At the

conclusion of the coaching, the teacher gave the same test as before to check on the improvement.

The paired results were:

Student A B C D E F G H I J K L

Before coaching 15 17 25 11 28 20 23 34 27 14 26 26

After coaching 20 16 25 18 28 19 26 37 31 13 27 20

Conduct a hypothesis test at a 5% level of significance, to see if the school’s claim was true.

2 Consider again the baseball problem on page 99:

A group of 12 year old children were asked to throw a baseball as fast as they could. A radar was

used to measure the speed of each throw. One year later, the same group was asked to repeat the

experiment. The results are shown below, with the children labelled A to K, and the speeds given

in km h¡1.

Age A B C D E F G H I J K

12 76 81 59 67 90 74 78 71 69 72 82

13 79 82 66 72 93 76 77 82 75 77 86

A sports commission report suggests that an average throwing speed difference of 5 km h¡1 is

expected between these ages. Conduct a hypothesis test at a 5% level of significance to determine

if the report’s claim is valid.

T
t¤

area .= 0 05

t0.05 ¼ 1.73 ¼ 2.015

We have rejected the null

hypothesis, yet the

confidence interval for

does contain the value

. This is because we

have a one-tailed test.

95%

= 0

¹

¹
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114 STATISTICS AND PROBABILITY

3 Consider again the seedling problem on page 99:

Pairs of identical seedlings were grown with two types of compost, one with Type 1 compost and

one with Type 2. The pairs were grown side by side in various garden plots. After a period of time,

the height (in cm) of each seedling was measured.

Pair A B C D E F G H

Type 1 12:1 14:6 10:1 8:7 13:2 15:1 16:5 14:6

Type 2 12:3 15:2 9:9 9:5 13:4 14:9 17:0 14:8

The manufacturer of Type 2 compost guarantees it will improve the growth of seedlings more than

Type 1 compost. Based on these experimental results, conduct a hypothesis test at a 5% level, to

determine whether the claim

THE PROBABILITY OF ERROR

In our hypothesis tests, we have probability ® that for ¹ = ¹0, our sample mean x could (validly) lie

in the critical region of the X-distribution.

The probability of making a Type I error = P(rejecting H0 when H0 is in fact true)

= ®, the level of significance.

Given that P(Type I error) = ®, we let P(Type II error) = ¯.

In Example 52, the null hypothesis H0 is accepted since there is insufficient evidence to reject H0.

There is the chance here of making a Type II error, which is accepting H0 when H0 is in fact not true.

If the significance level was ® = 0:05 and not 0:01, then H0 would have been rejected.

Thus ¯ is dependent on ®.

By reducing ® = P(Type I error), the probability ¯ = P(Type II error) is increased.

In fact: We can only calculate ¯ = P(Type II error) if ¹, ¾, and n are all known.

Suppose we conduct a hypothesis test with level of significance ® and null hypothesis H0: ¹ = ¹0,

and suppose ¾2 is known.

We accept H0 if the sample mean x does not lie in the critical region of the X distribution:

One-tailed (right) test

x 6 ¹0 + z®
¾p
n

One-tailed (left) test

x > ¹0 ¡ z®
¾p
n

Two-tailed test

¹0¡z®

2

¾p
n
6 x 6 ¹0+z®

2

¾p
n

But suppose H0 is false, and the true population mean is actually ¹ = ¹a, where ¹a 6= ¹0.

In this case, ¯ = P(Type II error)

= P(accepting H0: ¹ = ¹0 j ¹ = ¹a) is calculated as follows:

is valid.

X
-¹0

¾p
n®z

x

X

x
+¹0

¾p
n®z

X

x
¹0

¾p
n

®

2

- z ¹0
¾p
n

®

2

+ z
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STATISTICS AND PROBABILITY 115

One-tailed (right) test

¯ = P(X 6 ¹0 + z®
¾p
n

)

where X » N(¹a,
¾2

n
)

One-tailed (left) test

¯ = P(X > ¹0 ¡ z®
¾p
n

)

where X » N(¹a,
¾2

n
)

Two-tailed test

¯=P(¹0¡z®

2

¾p
n
6X6¹0+z®

2

¾p
n
)

= 1 ¡ 2P(X > ¹0 + z®

2

¾p
n

)

where X » N(¹a,
¾2

n
)

The power of a test is defined to be 1 ¡ ¯, which equals the probability of (correctly) rejecting the

null hypothesis H0 when H0 is false.

Note that the closer ¹a is to ¹0, that is the smaller j¹a ¡ ¹0j is, the larger the value of

¯ = P(Type II error) = P(accept H0 j H0 is false), and hence the lower the power of the test.

Cans of chickpeas are labelled 400 g and it is known that the true weight of cans is normally

distributed with a standard deviation of 10 g.

A statistician wishes to conduct a test to see if the mean weight of a can is less than 400 g. He

uses a sample of 12 cans, and a 2% level of significance.

a Find the probability of:

i a Type I error ii a Type II error, given the true mean ¹ = 395 g.

b Find the power of the test, given the true mean ¹ = 395 g.

a i P(Type I error) = ® = 0:02

ii H0: ¹ = 400 g H1: ¹ < 400 g

H0 is retained if x > 400 ¡ 2:054 £ 10p
12

¼ 394:0713

) ¯ = P(Type II error)

= P(X > 394:0713)

¼ 0:626

b Power = 1 ¡ ¯ ¼ 0:374

Example 54

X

+¹0
¾p
n®z

¯

¹a¹0
X

-¹0
¾p
n®z

¯

¹a ¹0

test distribution true distribution true distribution test distribution

X

¯

¹a¹0

¹0 ¡ z®

2

¾p
n

¹0 + z®

2

¾p
n

test distribution true distribution

X400

Area .= 0 02

-z =0.02 400 ¡ 2:054 £ 10p
12

X

¯

¹a¹0
®

critical

value

X

¯

¹a¹0

®critical

value
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116 STATISTICS AND PROBABILITY

A sample of size 25 is taken from a normal population with unknown mean ¹ and known

variance 36.

To test the hypotheses: H0: ¹ = 42, H1: ¹ > 42 the decision rule is:

accept H0 if the sample mean x 6 43:5

reject H0 if the sample mean x > 43:5 .

a Find the probability of a Type I error for the given decision rule with critical value 43:5 .

b Suppose the true value of the mean is 44:9 .

i Find the probability of a Type II error.

ii Suppose the critical value in the decision rule is changed. For what critical value is

P(Type I error) = P(Type II error)?

a X » N(¹, 36
25)

) under the null hypothesis X » N(42, 1:22)

) P(Type I error)

= P(rejecting H0 when H0 is true)

= P(X > 43:5)

¼ 0:106

b i If ¹ = 44:9, then X » N(44:9, 1:22).
We accept H0 if x 6 43:5 .

) P(Type II error)

= P(accepting H0 when H0 is false)

= P(X 6 43:5)

¼ 0:122

ii By symmetry, since the standard deviation for X is constant at 1:2 for both the test

distribution and the true distribution, P(Type I error) = P(Type II error) for the critical

value which is the average of 42 and 44:9 .

The critical value =
42 + 44:9

2
= 43:45

P(Type I error) = P(Type II error) ¼ 0:113

Example 55

X44.9
43.45

42

equal

areas

X43.542

¾X = 1.2

X44.943.5

¾X = 1.2
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STATISTICS AND PROBABILITY 117

EXERCISE H.5

1 In a population of adult trout, it is known that the length X cm is normally distributed with known

variance 6 cm2, but the mean ¹ cm is unknown.

It is proposed to test the hypotheses H0: ¹ = 27 cm

H1: ¹ > 27 cm

using the mean x of a sample of size 9.

a Find the decision rule for the test, in terms of x, that corresponds to a significance level of

i 5% ii 1%.

b Suppose the true value of the mean is ¹ = 29:2 .

Calculate P(Type II error) when P(Type I error) is

i 0:05 ii 0:01 .

2 A sample of size 16 is taken from a normal population with unknown mean ¹ and known variance 64.

The sample is used to test the hypotheses H0: ¹ = 150, H1: ¹ > 150.

The decision rule for the test is: accept H0 if the sample mean x 6 155

reject H0 if x > 155.

a Find P(Type I error).

b Suppose the true mean is ¹ = 159.

i Find the probability of a Type II error.

ii Suppose a new critical value is used for the decision rule. Determine the critical value for

x so that P(Type I error) = P(Type II error).

3 A sample of size 30 is taken from a normal population with unknown mean ¹ and known

variance 7:5 . The sample is used to test the hypotheses H0: ¹ = 37, H1: ¹ < 37.

a Determine the decision rule, in terms of the sample mean x, for the test so that

P(Type I error) = 0:05 .

b For the case where the true mean is ¹ = 36, find the power of the test.

c Find the true value of ¹ given that P(Type I error) = 0:05 and P(Type II error) = 0:1 for

this test.

4 The weight of a pumpkin from a very large crop is normally distributed with unknown mean ¹ and

standard deviation 0:7 kg.

Using a random sample of 15 pumpkins from the crop, a statistician conducts a hypothesis test at

the 5% level of significance.

Suppose that the true value of the mean is actually 6:4 kg.

a For the test ¹ > 6 kg, calculate the probability of a Type II error.

b For the test ¹ 6= 6 kg, calculate the power of the test.

c For the test ¹ < 6 kg, calculate the power of the test.

5 The length of a beam produced in a manufacturing process is normally distributed with standard

deviation 0:15 m. The manufacturer claims the mean length of such beams is 3:5 m.

A random sample of 20 beams is taken and their mean length x is calculated. The value x is used

to test the manufacturer’s claim.

a State suitable hypotheses for a two-tailed test.

b For a level of significance of 1%, define the critical region for x.

c Calculate the probability of making a Type II error if the true mean length is 3:4 m.
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118 STATISTICS AND PROBABILITY

ERROR ANALYSIS WITH OTHER DISTRIBUTIONS

Consider a hypothesis test where the null hypothesis H0 and alternative hypothesis H1 are defined and

the decision rule for accepting or rejecting H0 is given either numerically or in abstract terms. We may

be required to use any one of our known probability distributions to calculate:

P(Type I error) = P(Reject H0 j H0 is true) = ® = level of significance for the test.

P(Type II error) = P(Accept H0 j H1 is true) = 1 ¡ (power of the test).

There are many possible questions of this form. We provide here only a few examples and exercises to

demonstrate the general approach to such problems.

The following results may be useful:

Suppose X1, X2, X3, ...., Xn are independent discrete random variables,

and that Sn = X1 + X2 + X3 + :::: + Xn.

² If Xi are Bernoulli random variables Xi » B(1, p), then Sn » B(n, p).

² If Xi are Poisson random variables Xi » Po(¸i), then Sn » Po(¸1 + ¸2 + ¸3 + :::: + ¸n).

² If Xi are Geometric random variables Xi » Geo(p), then Sn » NB(n, p).

² If Xi are Negative binomal random variables Xi » NB(ri, p), then

Sn » NB(r1 + r2 + r3 + :::: + rn, p).

To test whether a coin is fair, the following decision rule is adopted:

Toss the coin 180 times. If the number of heads obtained X is between 75 and 105 inclusive,

accept the hypothesis that the coin is fair, otherwise reject it.

a Define the null hypothesis H0 and alternative hypothesis H1.

b i Define a Type I error. ii Find the probability of making a Type I error.

iii What is the level of significance for this test?

c Suppose the decision rule is changed so that P(Type I error) ¼ 0:05 .

What is the new decision rule?

d The coin is actually biased, and the probability of obtaining a head with each toss is 0:65 .

Using the original decision rule, find P(Type II error).

a H0: The coin is fair, so p = probability of obtaining a head in one coin toss

= 0:5

H1: The coin is biased, so p 6= 0:5.

b i A Type I error is rejecting H0 when H0 is true. This means deciding the coin is biased

when it is in fact fair.

ii P(Type I error)

= P(Reject H0 j H0 is true)

= P(X 6 74 or X > 106 j p = 0:5) fwhere X » B(180, 0:5)g
= 1 ¡ P(75 6 X 6 105)

= 1 ¡ [P(X 6 105) ¡ P(X 6 74)]

¼ 0:0206

Example 56
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STATISTICS AND PROBABILITY 119

iii The test is at about the 2% level of significance.

The new decision rule is:

Toss the coin 180 times. If the number of heads obtained X satisfies 77 6 X 6 103, accept

the null hypothesis that the coin is fair, otherwise reject it.

d If p = 0:65, then X » B(180, 0:65).

P(Type II error) = P(75 6 X 6 105 j X » B(180, 0:65))

¼ 0:0374

EXERCISE H.6

1 A tetrahedral die has faces marked 1, 2, 3, and 4. To test whether the die is fair for rolling a 4, the

following decision rule is adopted:

Roll the die 300 times. If the number of 4s obtained, X, is between 62 and 88 inclusive,

we accept the hypothesis that the die is fair for rolling a 4. Otherwise, we reject it.

a Define the null hypothesis H0 and the alternative hypothesis H1.

b i Define a Type I error for this example.

ii Find the probability of making a Type I error.

iii What is the level of significance for the test?

c Suppose the decision rule is changed so that P(Type I error) ¼ 0:02 . What is the new decision

rule?

d The die is actually biased with P(rolling a 4) = 0:32 . Use the original decision rule to find

P(Type II error).

2 A machine fills each can of fizzy drink with volume Y cm3, where Y is normally distributed with

mean ¹ and standard deviation 2 cm3.

The mean ¹ is believed to be 330 cm3. In order to check this value, a random sample of 16 cans

is selected, and the sample mean y is calculated.

The following hypotheses are set up: H0: ¹ = 330

H1: ¹ 6= 330.

The critical region is defined as fy < 329g [ fy > 331g.

a Find the significance level for this test.

b If the true value of ¹ is found to be 328 cm3, find the probability of a Type II error with this

test.

For this discrete distribution,

this is as close as we can get

to without exceeding it.0 05:

c Assuming H0 is true, X » B(180, 0:5), and for the hypotheses in a we have a two-tailed

test, where the total area of the critical region is 0:05 .

Solving P(X 6 k) = 0:025 gives k = 77

Solving P(X 6 k) = 0:975 gives k = 103

Check: 1 ¡ P(77 6 X 6 103)

= 1 ¡ (P(X 6 103) ¡ P(X 6 76))

¼ 0:0439
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120 STATISTICS AND PROBABILITY

A random variable X representing the number of successes in 270 trials can be modelled by a

binomial distribution with parameters n = 270 and p, whose value is unknown. A significance

test is performed, based on a sample value of x0, to test the null hypothesis p = 0:6 against the

alternative hypothesis p > 0:6 . The probability of making a Type I error is 0:05 .

a Find the critical region for x0.

b Find the probability of making a Type II error in the case when p is actually 0:675 .

a H0: p = 0:6, H1: p > 0:6 .

Since n = 270 is very large, the binomial random variable X can be approximated by a

normal random variable Xc » N(np, np(1 ¡ p))

where np = 270 £ 0:6 and np(1 ¡ p)

= 162 = 270 £ 0:6 £ 0:4

= 64:8

) Xc » N(162, 64:8)

The critical region is Xc > 175:2

But X is discrete,

) the critical region is X > 176.

b If p = 0:675, np = 270 £ 0:675 and np(1 ¡ p)

= 182:25 = 270 £ 0:675 £ 0:325

¼ 59:231

Now X » B(270, 0:675) can be approximated by Xc » N(182:25, 59:231), and from a

the critical region is X > 175:2

) P(Type II error) = P(H0 is accepted j H1 is true)

= P(X 6 175:2 j p = 0:675)

¼ 0:180 or 18:0%.

A discrete random variable X has a Poisson distribution with unknown mean m. We wish to test

the hypothesis H0: m = 2 against H1 : m 6= 2.

A random sample fx1, ...., x12g of 12 independent values is taken from X, with replacement.

The decision rule is: accept H0 if 16 6
12P
i=1

xi 6 33, otherwise reject it.

a Define the critical region for S =
12P
i=1

xi.

b i Define a Type I error. ii Calculate P(Type I error).

c The true value of m = 2:5 .

i Define a Type II error. ii Calculate P(Type II error).

a Since X is a discrete random variable with values 0, 1, 2, ...., so is S.

) the critical region is f0 6 S 6 15g [ fS > 34g.

b i A Type I error is rejecting H0 when H0 is in fact true. This means deciding m 6= 2

when in fact m = 2 and X » Po(2).

Example 58

Example 57

X

area = 0.05

162 175.2
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STATISTICS AND PROBABILITY 121

ii Assuming H0 is true, X » Po(2) and ) S » Po(24).

P(Type I error) = P(S is in the critical region j S » Po(24))

= P(0 6 S 6 15 or S > 34)

¼ 0:034 40 + 1 ¡ 0:9686

¼ 0:0658

c i A Type II error is accepting H0 when H0 is in fact false. This means accepting m = 2
when in fact m = 2:5 .

ii If X » Po(2:5), then S » Po(30).

) P(Type II error) = P(16 6 S 6 33)

= P(S 6 33) ¡ P(S 6 15)

¼ 0:743

= P(S 6 15) + 1 ¡ P(S 6 33)

3 Eri has a coin which has probability p of giving a head when tossed. She believes that the coin is

fair. However, Eri’s friend, Mayuki, thinks that the coin is biased, and that p > 0:5 .

To determine which of them is correct, Eri tosses the coin 12 times. Let X denote the number of

heads obtained.

a State appropriate null and alternative hypotheses.

b Eri rejects the null hypothesis if X > 10.

i What name is given to the region X > 10?

ii What is meant by the significance level of a hypothesis test? Find its value for this test.

c In fact, the coin is biased and p = 0:6 . Find the probability of a Type II error.

d If Eri uses the decision rule from b, what type of error is Eri at risk of making?

4 To find the age of an archaeological specimen, a researcher

measures the emission of radioactive particles. The number

of particles X emitted in n minutes is said to have a Poisson

distribution with parameter n¸, where the value of ¸ depends

upon the age of the specimen.

Two hypotheses concerning the age of one particular specimen

are put forward:

H0: the specimen is 5000 years old, in which case ¸ = 2

H1: the specimen is 10 000 years old, in which case ¸ = 5 .

It is decided to count the number of radioactive particles X
emitted in n minutes, and accept H0 if X 6 3, or reject H0

if X > 4.

a Suppose n = 1. Find the probability of:

i rejecting H0 given that H0 is true ii accepting H0 given that H1 is true.

b In order that the researcher can publish his findings, the probability of accepting H0 given that

H1 is true, must be less than 0:005.

i Show that the minimum number of complete minutes for which counting should be

recorded is three.

ii Find the corresponding probability of rejecting H0 given that H0 is true in this case.
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122 STATISTICS AND PROBABILITY

A discrete random variable X has a geometric distribution with unknown parameter p. We wish

to test the hypothesis H0: p = 0:3

against H1: p 6= 0:3 .

A random sample fx1, x2, ...., x10g of independent values is taken from X, with replacement.

The critical region is defined as

½
10P
i=1

xi 6 18

¾
[
½

10P
i=1

xi > 55

¾
.

a For which values of S =
10P
i=1

xi will the null hypothesis be accepted?

b i State the distribution of S, under the null hypothesis.

ii Define a Type I error. iii Calculate the level of significance for this test.

c The true value of p is p = 0:2 .

i Define a Type II error. ii Calculate the power of the test.

a X is a discrete random variable, and ) so is S.

Hence the null hypothesis will be accepted for values of S such that 19 6 S 6 54.

b i If X » Geo(0:3) then S » NB(10, 0:3) has a negative binomial distribution.

ii A Type I error is rejecting H0 when H0 is in fact true. This means deciding p 6= 0:3
when in fact p = 0:3 .

iii The level of significance
= P(Type I error)

= P(S 6 18 or S > 55 j H0 is true)

= P(S 6 18 or S > 55 j S » NB(10, 0:3))

= P(S 6 18) + (1 ¡ P(S 6 54))

=
18P

i=10

¡¡
i¡1
9

¢
(0:3)10(0:7)i¡10

¢
+

µ
1 ¡

54P
i=10

¡¡
i¡1
9

¢
(0:3)10(0:7)i¡10

¢¶
¼ 0:040 26 fusing technologyg
¼ 4%

c i A Type II error is accepting H0 when H0 is false. This means accepting

p = 0:3 when in fact p = 0:2 .

ii Power of the test
= 1 ¡ P(Type II error)

= 1 ¡ P(19 6 S 6 54 j p = 0:2)

= 1 ¡ P(19 6 S 6 54 j S » NB(10, 0:2))

= 1 ¡ (P(S 6 54) ¡ P(S 6 18)) when S » NB(10, 0:2)

= 1 ¡
½

54P
i=10

¡
i¡1
9

¢
(0:2)10(0:8)i¡10 ¡

18P
i=10

¡
i¡1
9

¢
(0:2)10(0:8)i¡10

¾
¼ 1 ¡ f0:660 39 ¡ 0:000 910 9g
¼ 0:341

¼ 34%

Example 59

GRAPHICS
CALCULATOR

INSTRUCTIONS
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STATISTICS AND PROBABILITY 123

5 A box is known to contain either 20 white counters and 80 black counters, H0, or 50 white counters

and 50 black counters, H1. In order to test hypothesis H0 against H1, four counters are drawn at

random from the box, without replacement. If all four counters are black H0 is accepted; otherwise

it is rejected.

a Find the probabilities of Type I and Type II errors for this test.

b Determine whether the decision rule “If either three or four counters drawn are black, H0 is

accepted; otherwise it is rejected” gives a test with more power.

7 A random variable X has a Poisson distribution with mean m, where m equals 3 or 4. To test the

value of m the following hypotheses are defined: H0: m = 3

H1: m = 4.

A random sample fx1, x2, ...., x9g of independent values is taken from X, with replacement.

If
9P

i=1

xi 6 37, then H0 is accepted, otherwise H1 is accepted.

a Find the level of significance for this test. b Calculate the power of the test.

8 A random variable X is known to have a geometric distribution with parameter p which is either

0:25 or 0:38 . To test the value of p, two hypotheses are defined: H0: p = 0:25

H1: p = 0:38 .

A random sample fx1, x2, ...., x12g of independent values is taken from X, with replacement.

Let S =
12P
i=1

xi. If 30 6 S 6 71, then H0 is accepted, otherwise H1 is accepted.

a Define the critical region in terms of S. b Find P(Type I error).

c Find P(Type II error).

6 A magician claims that he can roll a six with a fair die on average nine times out of ten.

a Calculate the probability that he will roll five or more sixes in six rolls, assuming:

i his claim is true ii he can roll a six, on average, only once in every six rolls.

b To test the magician’s claim, he is invited to roll the die six times, his claim being accepted if

he rolls at least four sixes. Find the probability that the test will:

i accept the magician’s claim when hypothesis a ii is true

ii reject the claim when it is justified, that is, when hypothesis a i is true.
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124 STATISTICS AND PROBABILITY

In this section we consider two variables X and Y which are counted or measured on the same individuals

from a population. Since two variables are being considered, this is bivariate statistics.

For example, for the given population, variables X and Y could be:

Population X Y

A class of students A student’s mark in Physics A student’s mark in Mathematics

A collection of plants of

the same species

The length of the stem of the

plant

The distance of the plant from a

water source

A class of students A student’s mark in Drama A student’s mark in Mathematics

We are interested in the following questions:

² Are X and Y dependent or independent?

² If X and Y are dependent, what is the nature of the relationship between X and Y ?

² Is the relationship between X and Y linear? If so, we can write Y = a + bX or X = c + dY
for some constants a, b, c, d.

² If the relationship between X and Y is approximately linear, what is the strength of the linear

dependence?

² Can we construct a reliable linear model Y = a+ bX (or X = c+ dY ) and use it to predict a

value of Y given a value of X, or a value of X given a value of Y ?

CORRELATION AND CAUSATION

Intuitively, correlation between two variables X and Y implies some sort of dependence. As one variable

changes, the other variable also changes. However, correlation does not imply causation. Although two

variables might increase or decrease in a related way, it is not necessary that a change in one variable

causes a change in the other variable. It is possible there is something else influencing both X and Y ,

or it may simply be coincidence.

For example, for a given population, it is observed over a period of time that:

² the number X of violent computer games sold per year increases

² the number Y of juvenile criminal convictions per year increases

² the number W of cupcakes sold per year increases.

We may find a correlation between X and Y , and we may see a link whereby a change in X might

cause a change in Y . However, proving causation requires much further analysis.

In contrast, it would appear unreasonable to suggest that a change in X might cause a change in W .

SCATTER DIAGRAMS

Consider two variables X and Y measured on the same population. Each of X and Y has a distribution

of values.

If there are n individuals being considered, we let xi and yi be the values of X and Y respectively

measured on the ith individual.

The n pairs f(x1, y1), (x2, y2), ...., (xn, yn)g form the joint probability distribution of X and Y .

The graph of the points f(x1, y1), (x2, y2), ...., (xn, yn)g is called a scatter diagram (or scatter plot).
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STATISTICS AND PROBABILITY 125

The scatter diagram may be used to judge whether X and Y are independent, or whether there is a linear

relationship between them. If all the points in the scatter diagram lie near or on a straight line, we say

there is a linear correlation between X and Y .

or

If Y tends to increase as X increases, we have a positive linear correlation.

For example:

X = a student’s mark in Physics

Y = a student’s mark in Mathematics.

If Y tends to decrease as X increases, we have a negative linear correlation.

For example:

X = the length of the stem of a plant

Y = the distance of the plant from a water source.

If there is no relationship between X and Y (linear or otherwise) then there is no correlation between

X and Y . We say that they are uncorrelated. X and Y are likely to be independent.

For example:

X = a student’s mark in Drama

Y = a student’s mark in Mathematics.

If all points (x, y) lie on a straight line, then we have a perfect linear correlation.
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126 STATISTICS AND PROBABILITY

THE (SAMPLE) PRODUCT MOMENT CORRELATION COEFFICIENT R AND

ITS OBSERVED VALUE r

Consider a scatter diagram of the joint probability

distribution (X, Y ) which includes a random

sample of n paired values

f(x1, y1), (x2, y2), ...., (xn, yn)g.

Let y = 1
n

nP
i=1

yi be the mean of the y-values.

Let x = 1
n

nP
i=1

xi be the mean of the x-values.

The point M(x, y) is called the mean point.

The lines Y = y and X = x are called the

mean lines. They divide the scatter diagram into

four quadrants.

For a point P (x, y), consider the quantity (x¡x)(y¡y), equal to the product of the signed deviations

of the point from each of the mean lines.

² If (x, y) lies in the 1st or 3rd quadrants, then (x ¡ x)(y ¡ y) > 0.

² If (x, y) lies in the 2nd or 4th quadrants, then (x ¡ x)(y ¡ y) < 0.

For the n independent pairwise measured values (x1, y1), (x2, y2), ...., (xn, yn), of X and Y on

a random sample of n individuals from a population, the observed value of the (sample) product

moment correlation coefficient R, is

r =

nP
i=1

(xi ¡ x)(yi ¡ y)s
nP

i=1

(xi ¡ x)
2

nP
i=1

(yi ¡ y)
2

where x = 1
n

nP
i=1

xi and y = 1
n

nP
i=1

yi.

Since there are many possible samples in a population, we note that xi has distribution Xi identical to

X, and yi has distribution Yi identical to Y , for i = 1, ...., n.

For any such sample, we define the (sample) product moment correlation coefficient to be:

R =

nP
i=1

(Xi ¡X)(Yi ¡ Y )s
nP

i=1

(Xi ¡X)
2

nP
i=1

(Yi ¡ Y )
2

where X = 1
n

nP
i=1

Xi and Y = 1
n

nP
i=1

Yi.

We can also write r = 1
n

nP
i=1

µ
xi ¡ x

¾X

¶µ
yi ¡ y

¾Y

¶
= 1

n

nP
i=1

(zxi
)(zyi

)

where zxi
=

xi ¡ x

¾X

is the standardised score of xi, using ¾X =

vuut nP
i=1

(xi ¡ x)2

n
,

and zyi
=

yi ¡ y

¾Y

is the standardised score of yi, using ¾Y =

vuut nP
i=1

(yi ¡ y)2

n
.

2nd quadrant 1st quadrant

3rd quadrant 4th quadrant

P (x y )1 1 1,

P (x y )2 2 2,

y - y2

x - x2

M

Y

X

y

x
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STATISTICS AND PROBABILITY 127

We see that r is the average of the product of the standardised signed deviations of point (xi, yi) from

the mean lines. Therefore:

² r > 0 implies most points lie in the 1st and 3rd quadrants of the scatter diagram. This corresponds

to a positive linear correlation.

² r < 0 implies most points lie in the 2nd and 4th quadrants of the scatter diagram. This corresponds

to a negative linear correlation.

² r = 0 implies the points are spread symmetrically amongst all four quadrants. This corresponds

to the variables being uncorrelated (in the linear sense).

For each data set:

i Draw a scatter diagram including the mean point M(x; y) and mean lines Y = y and

X = x.

ii Discuss whether there is a linear correlation between X and Y .

iii Calculate the standard deviations ¾X and ¾Y .

iv Calculate r.

a X 2 4 6 8 10 12 14

Y 35 30 25 20 15 10 5

b X 1 4 7 10 13 16 19

Y 5 9 13 17 21 25 29

c X 2 3 3 3 3 4 5 5 5 5 6

Y 3 1 2 4 5 3 1 2 4 5 3

d X 2 4 6 8 10 12 14

Y 6 16 22 24 22 16 6

a i x = 8, y = 20
) M(x, y) = (8, 20)
The mean lines are X = x = 8 and

Y = y = 20.

ii There is a perfect negative correlation

between X and Y .

iii ¾X = 4, ¾Y = 10

iv r = 1
7

7X
i=1

µ
xi ¡ x

¾X

¶µ
yi ¡ y

¾Y

¶
= 1

7

©¡
2¡8
4

¢ ¡
35¡20

10

¢
+
¡
4¡8
4

¢ ¡
30¡20

10

¢
+
¡
6¡8
4

¢ ¡
25¡20

10

¢
+
¡
8¡8
4

¢ ¡
20¡20

10

¢
+
¡
10¡8

4

¢ ¡
15¡20

10

¢
+
¡
12¡8

4

¢ ¡
10¡20

10

¢
+
¡
14¡8

4

¢ ¡
5¡20
10

¢ª
= ¡1

b i x = 10, y = 17
) M(x, y) = (10, 17)
The mean lines are X = x = 10 and

Y = y = 17.

ii There is a perfect positive correlation

between X and Y .

iii ¾X = 6, ¾Y = 8

iv Using a similar calculation to a iv, r = 1.

Example 60

Y

X
2 4 6 8 10 12 14

M

5
10
15
20
25
30
35

0

x = 8

y = 20

Y

X
1 4 7 10 13 16 19

M

5
9

13
17
21
25
29

0

y = 17

x = 10
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128 STATISTICS AND PROBABILITY

c i x = 4, y = 3
) M(x, y) = (4, 3)
The mean lines are X = x = 4 and

Y = y = 3.

ii There is no linear correlation between

X and Y . The variables are possibly

independent.

iii ¾X ¼ 1:206, ¾Y ¼ 1:348

iv r = 0

d i x = 8, y = 16
) M(x, y) = (8, 16)
The mean lines are X = x = 8 and

Y = y = 16.

ii There is a quadratic relationship between

the variables, so they are dependent.

However, there is no linear correlation

between them.

iii ¾X ¼ 4, ¾Y ¼ 6:928 iv r = 0

From the above example we observe:

² perfect positive linear correlation has r = 1

² perfect negative linear correlation has r = ¡1

² if there is no linear correlation between X and Y , then r = 0.

This example shows the extreme cases, and shortly we will prove that ¡1 6 r 6 1.

Positive correlation Negative correlation

r = 1
perfect

positive

correlation

r = ¡1
perfect

negative

correlation

0:95 6 r < 1
very strong

positive

correlation

¡1 < r 6 ¡0:95
very strong

negative

correlation

0:87 6 r < 0:95
strong

positive

correlation

¡0:95 < r 6 ¡0:87
strong

negative

correlation

0:5 6 r < 0:87
moderate

positive

correlation

¡0:87 < r 6 ¡0:5
moderate

negative

correlation

0 < r < 0:5
weak

positive

correlation

¡0:5 < r < 0
weak

negative

correlation

Y

X
1 2 3 4 5

M

5
4
3
2
1

60

x = 4

y = 3

Y

X
2 4 6 8 10

24
22

16

6

12 14

M

0

y = 16

x = 8
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STATISTICS AND PROBABILITY 129

We note that even for the case of no linear correlation, where r = 0, X and Y may be independent or

dependent. For example:

EXERCISE I.1

1 a Draw the scatter diagram for the bivariate data set

x 2 2 2 2 3 3 3 4 4 5

y 8 10 12 14 8 10 12 8 10 8

b Hence determine whether there is positive, negative, or no correlation.

c Draw the lines x = x and y = y on the diagram. Do these lines and the four quadrants

confirm your decision in b?

d Use the formula r =
1

n

nP
i=1

(zxi
)(zyi

) to show that r = ¡0:5 .

2 a Use r =

nP
i=1

(xi ¡ x)(yi ¡ y)s
nP

i=1

(xi ¡ x)
2

nP
i=1

(yi ¡ y)
2

to show that r =

nP
i=1

xiyi ¡ nxysµ
nP

i=1

x 2
i

¡ nx2

¶µ
nP

i=1

y 2
i

¡ ny2

¶ .

b Hence show that r = ¡0:5 for the data set in question 1.

3 Consider the following set of bivariate data about the average daily food consumption of 12 obese

adults.

Weight (x kg) 96 87 84 75 98 88 93 81 89 64 68 78

Food consumption

(y £ 100 calories per day)
35 34 35 29 41 35 36 30 34 26 28 31

a Draw a scatter diagram for the data set.

b Describe the correlation between x and y.

c Calculate the product moment correlation coefficient.

4 A selection of students were asked how many phone calls and text messages they had received the

previous day. The results are shown below.

Student A B C D E F G H

Phone calls received 4 7 1 0 3 2 2 4

Text messages received 6 9 2 2 5 8 4 7

a Draw a scatter diagram of the data.

b Calculate r.

c Describe the linear correlation between phone calls received and text messages received.

Y

X

X Y, independent

Y

X

X Y, dependent
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130 STATISTICS AND PROBABILITY

5 A basketballer takes 20 shots from each of ten different positions marked on the court. The table

below shows how far each position is from the goal, and how many shots were successful:

Position A B C D E F G H I J

Distance from goal (x m) 2 5 3:5 6:2 4:5 1:5 7 4:1 3 5:6

Successful shots (y) 17 6 10 5 8 18 6 8 13 9

a Draw a scatter diagram of the data.

b Do you think r will be positive or negative?

c Calculate the value of r.

d Describe the linear correlation between these variables.

e Copy and complete:

As the distance from goal increases, the number of successful shots generally ......

f Is there a causal relationship between these variables?

6 Consider the data set: x 1 2 3

y 1 3 4

a Calculate r for the data set.

b Let u = 2x + 1 and v = 3x ¡ 4.

i List the data (u, v) in a table. ii Calculate r for this data.

c Let u = ¡3x + 5 and v = 3x ¡ 4.

i List the data (u, v) in a table. ii Calculate r for this data.

d Let u = 2x + 1 and v = ¡3y ¡ 1.

i List the data (u, v) in a table. ii Calculate r for this data.

e Let u = ¡2x + 1 and v = ¡3y ¡ 1.

i List the data (u, v) in a table. ii Calculate r for this data.

f Compare your answers from a to e. What do your results suggest?

CORRELATION BETWEEN TWO RANDOM VARIABLES X AND Y AND THE

(POPULATION) PRODUCT MOMENT CORRELATION COEFFICIENT ½

So far we have considered a measure r for the strength of correlation between variables X and Y using

observed values (x1, y1), (x2, y2), ...., (xn, yn).

Such a set of values may well be from a population of n individuals. However, in practice it is likely to

be only a sample of values from a larger population on which variables X and Y are measured.

We now establish the theory to examine linear correlation between random variables X and Y for a

general population.

Consider the distribution of X and the distribution of Y for the whole population.

Let E(X) = ¹X denote the mean value of X

E(Y ) = ¹Y denote the mean value of Y

Var(X) = ¾ 2
X denote the variance of X

Var(Y ) = ¾ 2
Y denote the variance of Y .

Motivated by our previous work, we consider a scatter diagram for pairs (x, y) for X and Y measured

on each individual in the population.
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STATISTICS AND PROBABILITY 131

Let M(¹X , ¹Y ) be the mean point and

x = ¹X , y = ¹Y be the mean lines.

The mean lines divide the scatter diagram into four

quadrants.

For a pair (x, y), the quantity (x¡¹X)(y ¡¹Y ) gives a signed measure of the deviations of x and y

from their respective means ¹X and ¹Y . The average value of these deviations, E((X ¡¹X)(Y ¡¹Y )),

provides a measure of the strength of linear dependence between X and Y .

The covariance of X and Y is Cov(X, Y ) = E((X ¡ ¹X)(Y ¡ ¹Y )).

We note that:

² The larger jCov(X, Y )j the greater the linear dependence of X and Y .

² If Cov(X, Y ) is large and positive, the majority of points

(x, y) lie in the first and third quadrants of the associated scatter

diagram. X and Y have a positive linear correlation.

² If Cov(X, Y ) is large and negative, the majority of points (x, y)

lie in the second and fourth quadrants of the scatter diagram.

X and Y have a negative linear correlation.

Theorem 14

Cov(X, Y ) = E(XY ) ¡ E(X)E(Y )

Proof:

Cov(X, Y ) = E((X ¡ ¹X)(Y ¡ ¹Y ))

= E(XY ¡ ¹Y X ¡ ¹XY + ¹X¹Y )

= E(XY ) ¡ ¹Y E(X) ¡ ¹XE(Y ) + ¹X¹Y

fby Theorem 7 and since E(¹X¹Y ) = ¹X¹Y by Theorem 1g
= E(XY ) ¡ ¹Y ¹X ¡ ¹X¹Y + ¹X¹Y

= E(XY ) ¡ E(X)E(Y )

2nd quadrant 1st quadrant

3rd quadrant 4th quadrant

M

Y

X¹X

¹Y

M

Y

X¹X

¹Y

M

Y

X¹X

¹Y
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132 STATISTICS AND PROBABILITY

Theorem 15

If X, Y are independent random variables, then Cov(X, Y ) = 0.

Proof: If X, Y are independent, then E(XY ) = E(X)E(Y ) fTheorem 7g
) Cov(X, Y ) = E(XY ) ¡ E(X)E(Y )

= E(X)E(Y ) ¡ E(X)E(Y )

= 0.

Note that converse of Theorem 15 is not true. If Cov(X, Y ) = 0, it is not necessarily true that X and

Y are independent.

We have observed that if Cov(X, Y ) is large and positive, then X and Y have a positive linear

correlation. However, since the definition of covariance very much depends on the given scales and

values of X and Y , it is difficult to quantify “large”. We therefore standardise the value by defining:

The (population) product moment correlation coefficient ½ of random variables X and Y is

½ =
Cov(X, Y )p
Var(X)Var(Y )

.

Note that ½ =
E((X ¡ ¹X)(Y ¡ ¹Y ))

¾X¾Y

= E

µµ
X ¡ ¹X

¾X

¶µ
Y ¡ ¹Y

¾Y

¶¶
= E(ZXZY )

where ZX =
X ¡ ¹X

¾X
, ZY =

Y ¡ ¹Y

¾Y

, and ¾X , ¾Y are the standard deviations of X and Y respectively.

Theorem 16

For X and Y two random variables with finite variances, ½ =
Cov(X , Y )p
Var(X)Var(Y )

satisfies ¡1 6 ½ 6 1.

Proof: Let ZX =
X ¡ ¹X

¾X

, ZY =
Y ¡ ¹Y

¾Y
where Var(X) = ¾ 2

X and Var(Y ) = ¾ 2
Y .

) E(ZX) = E(ZY ) = 0.

Also E(Z 2
X) = Var(ZX) + (E(ZX))2

= 1 + 02

= 1

and similarly E(Z 2
Y ) = 1.

Let U = tZX + ZY . Since U2 > 0, E(U2) > 0

) E((tZX + ZY )2) > 0

) E(t2Z 2
X + 2tZXZY + Z 2

Y ) > 0

) t2E(Z 2
X) + 2tE(ZXZY ) + E(Z 2

Y ) > 0

) t2 + 2t½ + 1 > 0
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STATISTICS AND PROBABILITY 133

The discriminant 4½2 ¡ 4 of this quadratic therefore satisfies 4½2 ¡ 4 6 0

) ½2 6 1

) ¡1 6 ½ 6 1

It follows that the observed value r of the sample product moment correlation coefficient satisfies

¡1 6 r 6 1. This is because, for X with distribution fx1, x2, ...., xng and Y with distribution

fy1, y2, ...., yng, for the n data pairs (x1, y1), (x2, y2), ...., (xn, yn) we have E(X) = x, E(Y ) = y,

Var(X) = ¾ 2
X , Var(Y ) = ¾ 2

Y and therefore r = ½ for this data.

Theorem 17

Let X and Y be random variables with finite variance.

1 If X and Y are independent then ½ = 0.

2 X and Y have a perfect linear correlation if and only if ½ = §1.

Proof:

1 If X and Y are independent then Cov(X, Y ) = 0 fTheorem 15g
) ½ =

Cov(X, Y )p
Var(X)Var(Y )

= 0.

Since X and Y are independent, there is no linear correlation between them.

2 ()) If Y = aX + b, a, b 2 R , a 6= 0, then ¹Y = E(Y ) = E(aX + b)

= aE(X) + b

= a¹X + b

and Var(Y ) = a2Var(X)

Also Y ¡ ¹Y = aX + b ¡ ¹Y

= aX + b ¡ (a¹X + b)

= a(X ¡ ¹X)

) Cov(X, Y ) = E((X ¡ ¹X)(Y ¡ ¹Y ))

= E(a(X ¡ ¹X)2)

= aE((X ¡ ¹X)2)

= aVar(X)

) ½ =
Cov(X , Y )p
Var(X)Var(Y )

=
aVar(X)p
a2(Var(X))2

=
a

jaj = §1

(() Conversely, suppose ½ = 1 or ¡1.

From the proof of Theorem 16 this means E(U2) = t2 + 2t½ + 1

= (t + 1)2 if ½ = 1 or

(t ¡ 1)2 if ½ = ¡1.

Case E(U2) = (t+ 1)2

Let t = ¡1, so U = ZY ¡ ZX .

) E(U2) = 0 and E(U) = E(ZY ¡ ZX) = E(ZY )¡ E(ZX) = 0

) Var(U) = E(U2) ¡ (E(U))2 = 0 ¡ 02 = 0
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134 STATISTICS AND PROBABILITY

Thus U takes only one value, the mean 0, with probability 1.

) 0 = ZY ¡ ZX

) 0 =
Y ¡ ¹Y

¾Y
¡ X ¡ ¹X

¾X

Rearranging, there exists a linear relationship between X and Y :

Y =
¾Y

¾X

X + (¹Y ¡ ¾Y
¹X

¾X
)

Case E(U2) = (t¡ 1)2

Let t = 1, so U = ZX + ZY .

) E(U2) = 0 and E(U) = E(ZX + ZY ) = E(ZX)+ E(ZY ) = 0

) Var(U) = E(U2) ¡ (E(U))2 = 0 ¡ 02 = 0

Thus U takes only one value, the mean 0, with probability 1.

) 0 = ZX + ZY

) 0 =
X ¡ ¹X

¾X
+

Y ¡ ¹Y

¾Y

Rearranging, there exists a linear relationship between X and Y :

Y = ¡¾Y

¾X

X + (¹Y + ¾Y
¹X

¾X
)

The (population) product moment correlation coefficient ½ is hence a measure of the strength of the linear

correlation between random variables X and Y . Values of ½ near 0 indicate a weak correlation and values

of ½ near §1 indicate a strong correlation. Values ½ = §1 indicate a perfect linear correlation.

In practice, we usually have only a sample from a population, and the observed value r of the (sample)

product moment correlation coefficient is used as an estimate for ½.

EXERCISE I.2

1 Use the formula given in Theorem 14 for the covariance Cov(X, Y ) of two random variables X

and Y , to show that:

a Cov(X, X) = Var(X) b Cov(X, X + Y ) = Cov(X, X) + Cov(X, Y )

c If X = c a constant, then Cov(X, Y ) = 0 for any random variable Y .

2 For X and Y two random variables, find Cov(X + Y , X ¡ Y ).

3 For X and Y two random variables, show that Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ).

4 Suppose X and Y are two random variables. Show that if Y = mX + c for constants m and c
with m 6= 0, then ½ = §1.

5 Let X and Y be two random variables with correlation coefficient ½.

Let U = a + bX and V = c + dY be two new random variables, for a, b, c, d constants.

Find the product moment correlation coefficient of U and V in terms of ½.

6 If X and Y are random variables with ¾ 2
X = 1, ¾ 2

Y = 9, and ½ = 1
9 , find the exact value of the

correlation coefficient between X and X + Y .

Hint: Use the result of question 3.
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STATISTICS AND PROBABILITY 135

THE TWO LINES OF REGRESSION

Consider the sample data (x1, y1), (x2, y2), ...., (xn, yn).

When we have a strong linear correlation between X and

Y , it is useful to fit a straight line model to the data. If we

are given the value of one variable, we can use the model

to predict the value of the other.

Conventionally, the “line of best fit” for data is obtained by

Gauss’ method of least squares, as follows.

THE REGRESSION LINE OF Y ON X

For this regression line we rely more heavily on the

measured values of x. We use this line to predict a value

of y for a given value of x.

Consider using a line of the form y = a + bx to model

the data. The constants a and b are chosen so that the sum

of the squared vertical distances of points from the line is

a minimum. This means we minimise

d 2
1 + d 2

2 + :::: + d 2
n =

nP
i=1

(yi ¡ a ¡ bxi)
2.

Suppose x =
1

n

nP
i=1

xi and y =
1

n

nP
i=1

yi.

Calculus can be used to show that

a = y ¡ bx and b =

nP
i=1

xiyi ¡ nx y

nP
i=1

x 2
i

¡ n(x)2
=

nP
i=1

(xi ¡ x)(yi ¡ y)

nP
i=1

(xi ¡ x)2
.

The regression line of Y on X has equation (y ¡ y) = b(x ¡ x)

which is (y ¡ y) =

2664
nP

i=1

(xi ¡ x)(yi ¡ y)

nP
i=1

(xi ¡ x)2

3775 (x ¡ x).

The constant b is called the regression coefficient for this line.

THE REGRESSION LINE OF X ON Y

For this regression line we rely more heavily on the

measured values of y. We use this line to predict a value

of x for a given value of y.

Consider using a line of the form x = c + dy to model

the data. The constants c and d are chosen so that the sum

of the squared horizontal distances of points from the line

is a minimum. This means we minimise

h 2
1 + h 2

2 + :::: + h 2
n =

nP
i=1

(xi ¡ c ¡ dyi)
2.

X

Y

(x y )2 2,

(x y )1 1,

(x y )n n,

We use this line of best fit

to predict a value of y for a

given value of x.

X

Y

(x y )2 2,

(x y )1 1,

(x y )n n,

d2

d1

dn

y = a + bx

X

Y

(x y )2 2,

(x y )1 1,

(x y )n n,

h2

h1

hn

x = c + dy
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136 STATISTICS AND PROBABILITY

Suppose x =
1

n

nP
i=1

xi and y =
1

n

nP
i=1

yi.

Calculus can be used to show that

c = x ¡ d y and d =

nP
i=1

xiyi ¡ nx y

nP
i=1

y 2
i

¡ n(y)2
=

nP
i=1

(xi ¡ x)(yi ¡ y)

nP
i=1

(yi ¡ y)2
.

The regression line of X on Y has equation (x ¡ x) = d(y ¡ y)

which is (x ¡ x) =

2664
nP

i=1

(xi ¡ x)(yi ¡ y)

nP
i=1

(yi ¡ y)2

3775 (y ¡ y).

The constant d is called the regression coefficient for this line.

We notice that the mean point M(x, y) lies on both regression lines. Thus either the two lines are

identical or M(x, y) is the unique point of intersection of the two regression lines.

Consider the data set from Exercise I.1 question 3, about the average daily food consumption of

12 obese adults.

Weight (x kg) 96 87 84 75 98 88 93 81 89 64 68 78

Food consumption

(y £ 100 calories per day)
35 34 35 29 41 35 36 30 34 26 28 31

a Find the regression line of y on x and the regression line of x on y.

b Find x and y, the mean of each data set.

c Use the appropriate regression line to estimate:

i the food consumption of an obese adult who weighs 92 kg

ii the weight of an obese adult whose food consumption is 3250 calories per day.

a

The regression line of y on x is

The regression line of x on y is

Example 61

We use this line of best fit

to predict a value of x for a

given value of y.

y = 0:364x + 2:454.

x = 2:398y + 4:68.
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STATISTICS AND PROBABILITY 137

b The point of intersection of the lines is M(83:4, 32:8). ) x ¼ 83:4, y ¼ 32:8

c Using the regression line of y on x with x = 92 kg,

¼ 35:942

We expect the food consumption will be about 3594:2 calories per day.

d Using the regression line of x on y with y = 32:5, x ¼ 2:398 £ 32:5 + 4:68

¼ 82:6 kg

We expect the weight will be about 82:6 kg.

Theorem 18

For a random sample of n independent paired values (x1, y1), (x2, y2), ...., (xn, yn):

1 The regression line of Y on X and the regression line of X on Y are the same line if and only

if r = §1, in other words, if and only if X and Y have a perfect linear correlation.

2 If r = 0 then the regression line Y on X has equation y = y (a horizontal line) and the

regression line X on Y has equation x = x (a vertical line).

Proof:

By definition, r =

nP
i=1

(xi ¡ x)(yi ¡ y)s
nP

i=1

(xi ¡ x)
2

nP
i=1

(yi ¡ y)
2

.

Define: sxy =
1

n

nP
i=1

(xi ¡ x)(yi ¡ y) to be the sample covariance

s 2
x =

1

n

nP
i=1

(xi ¡ x)2 to be the sample variance of the x-values

s 2
y =

1

n

nP
i=1

(yi ¡ y)2 to be the sample variance of the y-values.

) r =
sxy

sxsy
and the regression line of Y on X is (y ¡ y) = b(x ¡ x)

=
sxy

s 2
x

(x ¡ x)

=
sxy

sx

³
x¡ x

sx

´
We multiply by

1

sy
to obtain

µ
y ¡ y

sy

¶
= r

³
x¡ x

sx

´
.... (1)

Similarly the regression line of X on Y is
³
x¡ x

sx

´
= r

µ
y ¡ y

sy

¶
.... (2)

1 Comparing (1) and (2) we see the two lines are identical if and only if r =
1

r

) r = §1

2 If r = 0, then using equations (1) and (2) we find the regression line of Y on X is y = y, and

the regression line of X on Y is x = x.

y ¼ 0:364 £ 92 + 2:454
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138 STATISTICS AND PROBABILITY

Corollary: Suppose b is the regression coefficient of the regression line Y on X
and d is the regression coefficient of the regression line X on Y .

Then r is the geometric mean of b and d.

Proof: Using the same definitions as above, bd =
sxy

s 2
x

sxy

s 2
y

=
s 2
xy

s 2
x s 2

y

= r2

r =
p
bd

Theorem 18 (2) verifies the intuitive results that when X and Y are uncorrelated:

² no matter what the value of X, the expected value of Y is E(Y ) = y.

² no matter what the value of Y , the expected value of X is E(X) = x.

EXERCISE I.3

1 The results of ten people in a Mathematics and a Physics test were:

Mathematics (x) 13 10 8 14 6 11 10 5 12 13

Physics (y) 21 15 14 20 12 16 9 10 17 12

a Determine the product moment correlation coefficient and the equations of the two regression

lines.

b Estimate the Mathematics score of someone who obtained a Physics score of 11.

c Estimate the Physics score of someone who obtained a Mathematics score of 18.

d Which of the estimates do you expect to be more accurate? Explain your answer.

2 The cholesterol level in the bloodstream (x) and the resting heart beat (y) of 10 people are:

Cholesterol level (x) 5:32 5:54 5:45 5:06 6:13 5:00 4:90 6:00 6:70 4:75

Resting heart beat (y) 55 48 55 53 74 44 49 68 78 51

a Determine the product moment correlation coefficient and the equations of the two regression

lines.

b Estimate the cholesterol level of someone with a resting heart beat of 60.

c Estimate the resting heart beat of someone with a cholesterol level of 5:8 .

3 Eight students swim 200 m breaststroke. Their times y in seconds, and arm lengths x in cm, are

shown in the table below:

Length of arm (x cm) 78 73 71 68 76 72 63 69

Breaststroke (y seconds) 123:1 123:7 127:3 132:0 120:8 125:0 140:9 129:0

a Determine the product moment correlation coefficient and the equations of the two regression

lines.

b Estimate the time to swim 200 m breaststroke for someone with arm length 65 cm.
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STATISTICS AND PROBABILITY 139

4 Consider the bivariate data given below, the first line of which gives the weight x in kg of 10 men

and 9 women and the second line of which gives the total weight y of body fat for each person.

Men Weight (x kg) 89 88 66 59 93 73 82 77 100 67

Body fat (y kg) 12 14 9 10 22 13 13 11 19 12

Women Weight (x kg) 57 68 69 59 62 59 56 66 72

Body fat (y kg) 17 22 24 18 18 15 16 22 24

a Calculate the product moment correlation coefficient

for X and Y for:

i the men ii the women

iii the 19 people in the data set.

b Determine the percentage of body fat w for each

person in the data set.

c Calculate the product moment correlation coefficient

for X and W for:

i the men ii the women

iii the 19 people in the data set.

THE BIVARIATE NORMAL DISTRIBUTION

For single continuous random variables, the normal distribution is a classic distribution for which we

have many theorems and results. In this section we generalise the normal distribution to two continuous

random variables X and Y .

X and Y have a bivariate normal distribution, or we say X and Y are jointly normally distributed,

if they have the joint probability density function

f(x, y) =
1

2¼¾X¾Y

p
1¡ ½2

exp

8>><>>:
¡
·³

x¡¹X

¾X

´2
¡ 2½

³
x¡¹X

¾X

´³
y¡¹Y

¾Y

´
+

³
y¡¹Y

¾Y

´2¸
2(1¡ ½)2

9>>=>>;
for ¡1 < x < 1, ¡1 < y < 1, and where

X is normal with mean ¹X and standard deviation ¾X ,

Y is normal with mean ¹Y and standard deviation ¾Y ,

and ½ =
Cov(X , Y )

¾X¾Y

is the (population) product moment

correlation coefficient of X and Y .

We have seen that if X and Y are any two independent random variables, then

by Theorem 15, Cov(X, Y ) = 0 and therefore ½ = 0.

For X and Y having a bivariate normal distribution, the converse of this result is also true.

Theorem 19

For X and Y with a bivariate normal distribution, X and Y are independent if and only if ½ = 0.

You may wish to use a

spreadsheet.

expfxg = ex
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140 STATISTICS AND PROBABILITY

Proof:

By the remarks preceeding this theorem we need only prove the (() case.

Suppose X and Y have a bivariate normal distribution with correlation coefficient ½ = 0.

The joint probability density function of X and Y becomes

f(x, y) =
1

2¼¾X¾Y
exp

(
¡1

2

"µ
x¡ ¹X

¾X

¶2

+

µ
y ¡ ¹Y

¾Y

¶2
#)

=

Ã
1

¾X
p
2¼

exp

(
¡1

2

µ
x¡ ¹X

¾X

¶2
)! Ã

1

¾Y
p
2¼

exp

(
¡1

2

µ
y ¡ ¹Y

¾Y

¶2
)!

= f(x)f(y)

where f(x) is the PDF of a normal random variable X with mean ¹X and standard deviation ¾X

and f(y) is the PDF of a normal random variable Y with mean ¹Y and standard deviation ¾Y .

Hence any probability calculated in the joint distribution will have form

P(x1 6 X 6 x2, y1 6 Y 6 y2) =

Z y2

y1

µZ x2

x1

f(x, y) dx

¶
dy

=

Z y2

y1

µZ x2

x1

f(x)f(y) dx

¶
dy

=

µZ x2

x1

f(x) dx

¶µZ y2

y1

f(y) dy

¶
= P(x1 6 X 6 x2) £ P(y1 6 Y 6 y2)

Hence X and Y are independent.

Case 1:

SHAPE OF THE BIVARIATE NORMAL DISTRIBUTION

The bivariate normal distribution takes the shape of a 3-dimensional bell-shaped surface.

Consider the following cases which describe how the different parameters affect the position, shape, and

orientation of the surface. Alongside each is a typical scatterplot for X and Y that might result from that

distribution.

¹X = ¹Y = 0 ) The peak is above the origin.

¾X = ¾Y ) The surface is axially symmetrical.

½ = 0 ) X and Y are independent.

Y

X

x y

f(x y),
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STATISTICS AND PROBABILITY 141

Case 2:

¹X 6= 0, ¹Y 6= 0 ) The peak is at M(¹X , ¹Y ).

¾X = ¾Y

½ = 0

Case 3:

¹X , ¹Y

¾X 6= ¾Y ) The surface has lines of symmetry

parallel to the X and Y axes.

½ = 0

Case 4:

¹X , ¹Y

¾X 6= ¾Y

½ 6= 0 ) X and Y are now dependent.

The surface has lines of symmetry

not parallel to the X and Y axes.

The result in Case 4 is a probability distribution which favours the points on the scatterplot for X and Y
showing linear correlation. For a sufficiently large sample of points, the regression line will approximate

one of the lines of symmetry of the bell-shaped probability distribution surface.

Y

XmXmX

mYmY

3-D BELL-SHAPED

SURFACE

yx

f(x y),

yx

f(x y),

( )m mX Y,( )m mX Y,

x y

f(x y),

( )m mX Y,( )m mX Y,

( )m mX Y,( )m mX Y,

Y

XmXmX

mYmY

Y

XmXmX

mYmY

IB HL OPT 2ed
magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-Stat-Prob\IB_HL_OPT-Stat-Prob_01\141IB_HL_OPT-Stat-Prob_01.cdr Tuesday, 16 April 2013 1:56:19 PM BRIAN



-t®

2

®

2

t T

®_wArea =®_wArea =

¡ jt¤j jt¤j T

p_wArea =p_wArea =

142 STATISTICS AND PROBABILITY

HYPOTHESIS TESTING FOR DEPENDENCE OF X AND Y

We have seen that to analyse the strength of linear correlation between two random variables X and Y

we use observed values (x1, y1), (x2, y2), ...., (xn, yn), and either a scatter diagram or the value of r.

In the case of X and Y having a bivariate normal distribution, a single such value of r can be used in a

hypothesis test to determine (at the given level of significance) whether or not ½ = 0 for X and Y , and

therefore whether or not X and Y are linearly correlated. By Theorem 19, this will also tell us whether

or not X and Y are independent.

We require the following result:

If X and Y have a bivariate normal distribution such that ½ = 0, then the sampling distribution

R

r
n¡ 2

1¡R2
has the Student’s t-distribution with (n ¡ 2) degrees of freedom.

Hence for any random sample of n independent paired data values (x1, y1), (x2, y2), ...., (xn, yn)

from the jointly normal distribution (X, Y ) with ½ = 0, the observed value r of the sample product

moment correlation coefficient is such that r

r
n¡ 2

1¡ r2
lies in the t(n ¡ 2)-distribution.

HYPOTHESIS TEST WITH H0: ½ = 0 AND H1: ½ 6= 0

Given a random sample of n independent paired data values (x1, y1), (x2, y2), ...., (xn, yn) from a

bivariate normal distribution (X, Y ):

(1) Calculate r, the observed value of the sample product moment correlation coefficient.

(2) Calculate the test statistic t¤ = r

r
n¡ 2

1¡ r2
.

(3) Either For level of significance ®, calculate the critical values §t®

2

for the t(n¡2)-distribution

which define the two-tailed critical region.

or Calculate the p-value P(T 6 ¡jt¤j) + P(T > jt¤j)
= 2P(T > jt¤j)

(4) We do not reject H0 if ¡t®

2

6 t¤ 6 t®

2

, or if the p-value is not less than ®.

We reject H0 in favour of H1 if t¤ lies in the critical region t¤ < ¡t®

2

or t¤ > t®

2

, or if the

p-value is less than ®.
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STATISTICS AND PROBABILITY 143

If the result of the hypothesis test is to reject H0: ½ = 0 in favour of H1: ½ 6= 0, we conclude that

the bivariate data is correlated. The strength of this correlation is measured by the value of r. In this

case the regression line of Y on X and the regression line of X on Y can be calculated, and predictions

for values of X and Y can be made.

Consider the following data set sampled from a bivariate normal distribution.

x 4 3 4 3 ¡4 ¡3 ¡4 ¡3

y 3 4 ¡3 ¡4 3 4 ¡3 ¡4

Conduct hypothesis tests at the 5% and 1% levels of significance, to determine whether or not the

two sets of data are correlated.

We test at the 5% and 1% levels: H0: ½ = 0 against H1: ½ 6= 0.

n = 8, so there are 6 degrees of freedom.

(1) r is calculated and is found to be zero.

(2) t¤ = r

r
n¡ 2

1¡ r2
= (0)

r
8¡ 2

1¡ (0)2
= 0.

(3) Either Since t¤ = 0, ¡t®

2

6 t¤ 6 t®

2

no matter what the level of significance is.

or The p-value equals 1.

(4) We retain H0 at both 5% and 1% levels, and conclude X and Y are uncorrelated.

The following data set is sampled from a bivariate normal distribution:

x 2 2 2 2 3 3 3 4 4 5

y 8 10 12 14 8 10 12 8 10 8

Conduct a hypothesis test at the 5% level of significance to determine whether or not the two sets

of data are correlated.

H0: ½ = 0 H1: ½ 6= 0

(1) r = ¡0:5

(2) t¤ = r

r
n¡ 2

1¡ r2
= ¡0:5

r
10¡ 2

1¡ (¡0:5)2
¼ ¡1:633

(3) n = 10

) there are 8 degrees of freedom

Either For ® = 0:05, t®

2

= t0:025 ¼ 2:306

) t¤ does not lie in the critical region.

Example 63

Example 62

GRAPHICS
CALCULATOR

INSTRUCTIONS

t -1.633¼¤

T

Area
= 0 25.0

Area
= 0 25.0

= -2 306.-t®

2

= 2 306.t®

2
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144 STATISTICS AND PROBABILITY

or p-value = 2P(T > jt¤j)
¼ 2P(T > 1:633)

¼ 0:1411

) p-value > ®

(4) Using either the critical region test or the p-value, we do not reject H0 at the 5% level of

significance.

We therefore conclude that ½ = 0, which means the sets of data are uncorrelated, and X and

Y are independent variables.

EXERCISE I.4

1 Perform a hypothesis test on the following bivariate data to determine whether or not the variables

are linearly correlated.

Mathematics (x) 13 10 8 14 6 11 10 5 12 13

Physics (y) 21 15 14 20 12 16 9 10 17 12

Consider both 5% and 1% levels of significance, and use both the critical region test and the p-value.

2 The cholesterol level in the bloodstream (x) and the resting heart beat (y) of 10 people are:

Cholesterol level (x) 5:32 5:54 5:45 5:06 6:13 5:00 4:90 6:00 6:70 4:75

Resting heart beat (y) 55 48 55 53 74 44 49 68 78 51

Perform a hypothesis test to determine whether or not the variables are linearly correlated. Consider

both 5% and 1% levels of significance, and use both the critical region test and the p-value.

3 The bivariate data below is sampled from a bivariate normal distribution. X is the number of Sudoku

puzzles solved in a three hour period, and Y is the number of logic puzzles solved in a three hour

period.

x 5 8 12 15 15 17 20 21 25 27

y 3 11 9 6 15 13 25 15 13 20

Carry out a hypothesis test to determine whether or not the variables are linearly correlated.

Consider both 1% and 5% levels of significance, and use only the p-value.

4 Consider the following data sampled from a bivariate normal distribution.

Carry out a critical region hypothesis test to determine whether or not the variables X and Y are

independent, using:

a a 5% level of significance b a 1% level of significance.

5 A random sample of n = 16 paired values from a bivariate normal distribution (X, Y ) has

correlation coefficient of r = ¡0:5 . Does this indicate the variables X and Y are correlated:

a at the 5% level of significance b at the 1% level of significance?

6 A random sample of paired values from a bivariate normal distribution has perfect correlation, so

r = 1. Explain why this data cannot be used in a hypothesis test for the correlation of X and Y .

Do you think a hypothesis test would be needed in this case?

Weight of Mother (x kg) 49 46 48 45 46 42 43 40 52 55 68

Birth weight of child (y kg) 3:8 3:1 2:5 3:0 3:2 2:8 3:1 2:9 3:4 2:9 3:9
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STATISTICS AND PROBABILITY 145

A random sample with correlation coefficient r = 0:5 is taken from a bivariate normal population

(X, Y ). What is the minimum sample size n required to conclude that X and Y are linearly

correlated at the 1% level of significance?

We test H0: ½ = 0 against H1: ½ 6= 0 with r = 0:5

) the test statistic is t¤ = 0:5

r
n¡ 2

1¡ (0:5)2
¼ 0:577

p
n ¡ 2 .

For infinitely many degrees of freedom the t-distribution

approximates the normal distribution Z » N(0, 1)

where t®

2

¼ z®

2

= z0:005 ¼ 2:576.

Thus t¤ > t®

2

if 0:577
p
n ¡ 2 > 2:576

) n > 21:9

) we require n > 22

Try n = 22, º = 20, t0:005 ¼ 2:845, t¤ ¼ 2:580 ) t¤ < t0:005 ) not significant.

n = 23, º = 21, t0:005 ¼ 2:831, t¤ ¼ 2:644 ) t¤ < t0:005 ) not significant.

n = 24, º = 22, t0:005 ¼ 2:818, t¤ ¼ 2:706 ) t¤ < t0:005 ) not significant.

n = 25, º = 23, t0:005 ¼ 2:807, t¤ ¼ 2:767 ) t¤ < t0:005 ) not significant.

n = 26, º = 24, t0:005 ¼ 2:797, t¤ ¼ 2:827 ) t¤ > t0:005

) for n > 26 we would reject H0: ½ = 0 in favour of H1: ½ 6= 0.

) a sample size of at least 26 is required to conclude, at the 1% level of significance, that X and

Y are correlated.

7 Consider a random sample with correlation coefficient r = 0:6 taken from a bivariate normal

distribution (X, Y ). What is the minimum sample size n necessary to decide that X and Y are

linearly correlated at the 5% level of significance?

8 Consider a random sample of 20 data pairs from a bivariate normal distribution (X, Y ). What is

the least value of jrj for this sample for which we would conclude, at the 5% level of significance,

that X and Y are correlated?

Example 64
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REVIEW SET A

6 To estimate the mean number of hours that

employees are away from work in a year due to

sickness, a sample of 375 people is surveyed. It

is found that for last year, the standard deviation

for the number of hours lost was 67. Suppose we

use this to approximate the standard deviation for

this year. Find the probability that the estimate is

in error by more than ten hours.

146 STATISTICS AND PROBABILITY

1 X1, X2, and X3 are random variables, each with mean ¹ and standard deviation ¾.

a Find the mean and standard deviation of:

i X1 + 2X2 + 3X3 ii 2X1 ¡ 3X2 + X3

b Find E
¡
[X1 ¡ X2]

2
¢

given that X1 and X2 are independent.

2 A student is waiting at a bus stop. He knows that 35% of all the buses going past can take him

to school. The other buses go elsewhere.

a Suppose the student will catch the first bus that will take him to school.

i Find the probability that it will take at most 4 buses for there to be a correct one.

ii Find the average number of buses it will take for there to be a correct one.

b Suppose the student decides that he will catch the third bus that would take him to school,

because he thinks his friend will be on that bus.

i Find the probability that he will catch the 7th bus that goes past.

ii Find the average number of buses it will take for the correct bus to arrive.

iii Find the probability that it will take no more than 5 buses for the correct bus to arrive.

X = x ¡3 ¡1 1 3 5

P(X = x) c c c c c

3 The probability distribution for the random

variable X is given in the table alongside.

Find the:

a value of c b mean of X

c probability that X is greater than the mean d variance of X.

4 In the Japanese J-League, it it known that 75% of all the footballers prefer to kick with their

right leg.

a In a random sample of 20 footballers from the J-League, find the probability that:

i exactly 14 players prefer to kick with their right leg

ii no more than five prefer to kick with their left leg.

b In a random sample of 1050 players from the J-League, find the probability that:

i exactly 70% of players prefer to kick with their right leg

ii no more than 25% prefer to kick with their left leg.

Hint: For b, use a suitable approximation for the random variable

X = the number of footballers who prefer to kick with their right leg.

5 Suppose X » B(n, p) where x = 0, 1, 2, 3, 4, ...., n.

a Show that X has Probability Generating Function G(t) = (1 ¡ p + pt)n.

b Hence prove that: i E(X) = np ii Var(X) = np(1 ¡ p).
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STATISTICS AND PROBABILITY 147

7 To work out the credit limit of a prospective credit card holder, a company gives points based

on factors such as employment, income, home and car ownership, and general credit history. A

statistician working for the company randomly samples 40 applicants and determines the points

total for each. His results are:

14 11 13 13 15 12 12 12 10 11 11 11 12 13
14 13 11 12 14 14 14 13 15 14 11 10 11 16
11 12 12 10 11 10 10 12 13 13 13 12

a Determine the sample mean x, and standard deviation sn.

b Determine a 95% confidence interval that the company would use to estimate the mean

point score for the population of applicants.

8 A group of 10 students was given a revision course before their final IB examination. To

determine whether the revision course was effective, the students took a test at the beginning

and at the end of the course. Their marks are recorded in the table below.

Student A B C D E F G H I J

Pre-test 12 13 11 14 10 16 14 13 13 12

Post-test 11 14 16 13 12 18 15 14 15 11

a Explain why it would not be appropriate to use the difference between the means of these

two sets of scores to evaluate whether the revision course was effective.

b Determine a 90% confidence interval for the mean of the differences in the examination

scores. Explain the meaning of your answer.

c It was hoped that by doing the revision course, the students’ scores would improve. Perform

an appropriate test at the 5% level of significance to determine whether this was the case.

9 Yarni’s resting pulse rate was 68 beats per minute for many years. However, using a sensible

diet and exercise, she hoped to reduce this rate. After six months, Yarni’s mean pulse rate is

65 beats per minute, with a standard deviation of 1:732. These statistics were calculated from

42 measurements. Using the p-value, is there sufficient evidence at a 5% level, to conclude that

Yarni’s pulse rate has decreased?

10 In 2011, the mean weight of a gentoo penguin from a

penguin colony was 7:82 kg with standard deviation

1:83 kg. Exactly one year after this data was found,

a sample of 48 penguins from the same colony were

found to have mean weight 7:55 kg. Is there sufficient

evidence, at a 5% level of significance, to suggest that

the mean weight in 2012 differs from that in 2011?

11 a Define the population product moment correlation coefficient ½ for the bivariate normal

distribution.

b Deduce that X and Y are independent random variables , ½ = 0.

c The bivariate data below compares the height (x cm) and weight (y kg) of 11 men.

Height (x cm) 164 167 173 176 177 178 180 180 181 184 192

Weight (y kg) 68 88 72 96 85 89 71 100 83 97 93

i Calculate the sample product moment correlation coefficient, r.

ii At a 5% level of significance, conduct a hypothesis test to determine whether or not

the variables X and Y are independent. Use the p-value test only.
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REVIEW SET B

148 STATISTICS AND PROBABILITY

12 Suppose distribution X has mean ¹ and variance ¾2.

Consider samples fx1, x2, x3, ...., xng of fixed size n > 1, of random independent values

of X.

Let X =
1

n

nP
i=1

Xi and S 2
n =

1

n

½µ
nP

i=1

X 2
i

¶
¡ nX

2
¾

.

a Find Var(X).

b Show that X is an unbiased estimator of ¹.

c Show that S 2
n is a biased estimator of ¾2.

d Hence show that S 2
n¡1 =

³
n

n¡ 1

´
S 2
n is an unbiased estimator of ¾2.

X = x ¡5 ¡1 3 6

P(X = x) 0:3 0:2 0:2

1 At a country fete, there is a game where players pay

to randomly choose a card from a table. There is an

amount X written on the back of the card. For X
being 3 or 6, the player wins $3 or $6, but for X

being ¡5 or ¡1, the player has to pay an extra $5 or $1.

a The probability distribution for X is shown in the table.

i What is the probability of getting a 6 on card X?

ii What is the expected return per game if the score is the return paid to the player?

iii Explain why organisers should charge $1 to play this game, rather than 50 cents.

Y = y ¡3 2 5

P(Y = y) 0:5 0:3 0:2

b At the next stall there is a similar game. It uses a

different set of cards with outcome Y which has the

probability distribution shown.

i Find the expected return to players for playing this

game.

ii Find the expected return for players wishing to play both games simultaneously.

iii How much would you expect the organisers to make if people played games X and

Y 500 times each, and the combined game of X and Y 1000 times, and they charged

$1 for every game played?

2 A coin is biased so that when it is tossed, the probability of obtaining tails is 3
5 . The coin is

tossed 1000 times, and X is the number of tails obtained.

a Find: i the mean of X ii the standard deviation of X.

b Find P(580 6 X 6 615) using X » B(100, 3
5 ).

c Find P(579:5 6 X 6 615:5) using X » N(600, 240).

d Explain why the answers in b and c are so similar.

3 By analysing the PDF of the Negative Binomial distribution, prove or disprove:

“The Geometric Distribution is a special case of the Negative Binomial distribution.”

4 Suppose X » Geo(p) where x = 1, 2, 3, 4, 5, ....

a Show that X has PGF given by G(t) =
pt

1¡ t(1¡ p)
for jtj < 1

1¡ p
.

b Hence, find E(X) and Var(X).
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STATISTICS AND PROBABILITY 149

5 The exponential random variable X has PDF f(x) = ¸e¡¸x for all x > 0. ¸ is a positive

constant.

a Graph y = f(x) for the case ¸ = 0:8 .

b For the case ¸ = 0:8, find: i E(X) ii Var(X)

c Prove that for the general exponential random variable, the median =
ln 2

¸
.

d Hence show the mean and median for the case ¸ = 0:8 on the graph in a.

e Show that the cumulative density function is F (X) = P(X 6 x) = 1 ¡ e¡¸x.

f Hence find P(X > 1:3) for the case ¸ = 0:8 .

6 A drink manufacturer produces soft drink for sale. Each bottle is advertised as having contents

375 mL. It is known that the machines producing these drinks are set so that the average volume

dispensed into each bottle is 376 mL with standard deviation 1:84 mL. The volumes dispensed

into each bottle are distributed normally.

a Find the probability that an individual randomly selected bottle has volume less than

373 mL.

b Find the probability that a randomly selected pack of a dozen bottles has an average volume

less than the advertised amount.

c Government regulations are set to ensure that companies meet their advertising claims.

This company can choose to be tested under either of the following rules:

I A randomly selected bottle must contain no less than 373 mL. or

II A randomly selected pack of 12 bottles must have average contents no less than the

advertised amount.

Explain clearly by which method the company would prefer to be tested by the Government

authority.

d Suppose the company chose to be tested using method II above. The company wants less

than 0:1% chance of being fined by the Government Authority for failing to meet the

requirement.

Find, to the nearest mL, what the setting should be for the average volume dispensed into

each bottle, assuming the standard deviation is unchanged.

7 The manufacturer of the breakfast cereal Maxiweet knows that the net contents of each packet

has variance 151:4 grams2. A sample of 120 packets is chosen at random, and their mean weight

is found to be 596:7 grams/packet.

a Construct a 95% confidence interval for the true mean of the population. Interpret your

answer.

b The manufacturer claims that the net weight of each packet is 600 g. Is there sufficient

evidence to support the manufacturer’s claim at the 5% level of significance?

c Find the sample size required if the manufacturer wishes to be 95% confident that the

sample mean differs from the population mean by less than 2 grams.

8 The house prices in a large town are normally distributed. A real estate agent claims that the

mean house price is E438 000. To test the real estate agent’s claim, 30 recently sold houses were

randomly selected and the mean price x was calculated. The standard deviation for this sample

was E23 500. What values of x, to the nearest E500, would support the agent’s claim at a 2%
level of significance?
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150 STATISTICS AND PROBABILITY

9 The covariance of random variables X and Y is defined as:

Cov(X, Y ) = E((X ¡ ¹X)(Y ¡ ¹Y ))

a Prove that Cov(X, Y ) = E(XY ) ¡ E(X) E(Y )

b Hence, prove that if X and Y are independent, then E(XY ) = E(X) E(Y )

c Given that X and Y are independent, expand and simplify Cov(X, X ¡ Y ).

10 A machine is used to fill packets with rice. The contents of each packet weighs X grams. X is

normally distributed with mean ¹ grams and standard deviation 3:71 grams.

The mean weight ¹ is stated to be 500 g. To check this statement, a sample of 13 packets is

selected, and the mean contents x is calculated.

The hypotheses for the test are H0: ¹ = 500 g and H1: ¹ 6= 500 g.

The critical region is defined by fx < 498g [ fx > 502g.

a What is the nature of the distribution of X?

b What is the meaning of the critical region?

c Show that the significance level for the test is approximately 0:0519.

d Find the probability of a Type II error with this test given that the true value of ¹ is

498:4 grams.

11 In 2011 a market gardener found that the weight of his

tomatoes was normally distributed with mean 106:3 g

and standard deviation 12:41 g.

In 2012 he used a different fertiliser and found that

a randomly selected sample of 65 tomatoes had mean

weight 110:1 g.

Assuming the population standard deviation in 2012

is again 12:41 g, is there sufficient evidence at a 1%
level, to suggest that the mean weight of a tomato has

increased?

12 A population X has mean ¹ and variance ¾2.

Random samples fx1, x2g of size 2 of random independent values are taken from X.

a Show that T1 =
3X1 + 7X2

10
is an unbiased estimator of ¹.

b Show that T2 =
3X1 + 2X2

5
is also an unbiased estimator of ¹.

c A random sample f2:6, 5:3g is taken from X.

Lucy uses T1 and Beth uses T2 to estimate ¹.

Eve says that estimator T1 is more efficient than estimator T2.

i Calculate Lucy’s estimate. ii Calculate Beth’s estimate.

iii Is Eve correct? Give reasons for your answer.

d Let T3 =
aX1 + bX2

c
be an estimator of ¹ for constants a, b, and c 2 R +.

State the required conditions on a, b, and c for T3 to be an unbiased estimator of ¹.
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REVIEW SET C

STATISTICS AND PROBABILITY 151

1 X1, X2, and X3 are independent random variables where X1 » N(2, 1
8), X2 » N(3, 1

16),

and X3 » N(a, b).

a If Y = 2X3 ¡ 2X2 ¡ X1, find:

i E(Y ) ii Var(Y )

b

c State the nature of the distribution of Y .

d Find P(X3 > 8b).

2 Pierre runs a game at a fair, where each player is guaranteed to win E10. Players pay a certain

amount each time they roll an unbiased die, and must keep rolling until a ‘6’ occurs. When a

‘6’ occurs, Pierre gives the player E10 and the game concludes. On average, Pierre wishes to

make a profit of E2 per game. How much does he need to charge for each roll of the die?

3 It is known that the probability of a journalist making no errors on each page is q.

a State the distribution of the random variable X that defines the number of errors made per

page by that journalist.

b Find the probability, in terms of q, that the journalist makes per page:

i one error ii more than one error.

c The journalist gets a bonus of $10 for a page with no errors or $1 for just one error on the

page, but loses $8 from their pay if there is more than one error on a page.

i Draw a probability distribution table for the random variable Y which describes the

returns for the journalist for making different numbers of errors on a page.

ii Find E(Y ) in terms of q.

iii Find the smallest value of q, 0 6 q 6 1, such that the journalist will receive an

overall bonus. Give your answer to three decimal places.

4 The weekly demand for petrol (in thousands of kilolitres) at a service station is a continuous

random variable with probability density function f(x) = ax3 + bx2, 0 6 x 6 1.

a If the mean weekly demand is 700 kilolitres, determine the values of a and b.

b Suppose the service station has a storage capacity of 950 kilolitres. Find the probability

that the service station will run out of petrol in any given week.

5 The PGF for the Negative Binomial variable X is G(t) =

µ
1¡ p

1¡ pt

¶r

for jtj <
1

p
and

r = 0, 1, 2, 3, 4, ....

The mean of X is ¹ =
pr

1¡ p
.

a Show that p =
¹

¹+ r
.

b Hence, show that G(t) =
1³

1 +
¹(1¡t)

r

´r .

c Find lim
r!1

G(t) and interpret your result.

d Copy and complete: Po(m) = lim
r!1

NB(r, ....).

Given that E(Y ) = 0 and Var(Y ) = 1, find the values of a and b.
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6 The weight W of gourmet sausages produced by Hans is normally distributed with mean 63:4 g

and variance 40:1 g2.

Suppose W is the mean weight of 10 randomly selected sausages.

a Find the probability that a randomly chosen

sausage will have a weight of 60 grams or less.

b State the distribution of W .

c Hence, calculate the probability that W 6 60 g.

Interpret your result.

d How large should a sample size be so there is less

than 1% chance that the mean weight of sausages

in the sample will be less than 60 g?

152 STATISTICS AND PROBABILITY

7 Romano’s Constructions are concerned about the number of its employees having headaches at

the end of their daily work period. They suspect that the headaches may be due to high systolic

blood pressure. High systolic blood pressure is generally diagnosed when a blood pressure test

is more than 140 mm Hg.

A doctor measures the systolic blood pressure of a random sample of the company employees,

and finds that the sample standard deviation is 11:2 mm Hg.

The doctor calculates the 95% confidence interval for the population mean to be

139:91 < ¹ < 147:49.

a Write down, in terms of the sample mean x, a general expression for the 95% CI for ¹.

b Hence find x.

c Explain why the CI in a cannot be used to find the sample size n without resorting to trial

and error.

d Use trial and error to find the sample size, given that n > 32.

8 A school claims to be able to teach anglers how to fish better and catch more fish. In order to

test this hypothesis, the school recorded the number of fish caught by a random sample of nine

anglers at a local jetty in a three hour period. The school then gave the anglers a free course to

help them with their fishing. After the fishing course was completed, they again recorded the

number of fish caught by the anglers at the same jetty in the same time period, at the same time

of day. The results were:

Angler A B C D E F G H I

Number of fish caught before 24 23 22 30 41 30 33 18 15

Number of fish caught after 36 32 40 27 32 34 33 28 19

a Test at the 5% level, whether the fishing school’s claim is indeed correct. State the type of

error you could make.

b Find the 90% confidence interval for the mean difference of the two sets of scores, and

interpret the meaning of your answer.

9 Last year a ten-pin bowler consistently bowled a score of around 200 each game, with a standard

deviation of 11:36.

Her last 35 scores have had mean 196:4, and she is convinced that her form is below that of

last year.

Assuming her scores are normally distributed, test her claim at a 2% level, using the critical

region.
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REVIEW SET D

STATISTICS AND PROBABILITY 153

10 A random variable X has a Poisson distribution with unknown mean m. We wish to test the

hypothesis H0: m = 3 against H1: m 6= 3.

To do this, a random sample of 15 independent values fx1, x2, x3, ...., x15g is taken from X,

with replacement.

The decision rule is: accept H0 if 34 6
15P
i=1

xi 6 56, otherwise reject H0.

a Define the critical region of S =
15P
i=1

xi.

b Find the Type I error and calculate its probability.

c If the true value of m is 3:4, what is the probability of a Type II error?

11 A random sample of 27 data pairs is taken from a bivariate normal distribution (X, Y ). What

is the greatest value of jrj for this sample for which we can conclude that, at a 5% level of

significance, X and Y are independent? Give your answer correct to 4 significant figures.

12 Suppose independent random samples of independent values are taken from the same population

with unknown mean ¹ and unknown variance ¾2.

For a sample of size n, the sample variance is defined by s 2
n =

1

n

nP
i=1

(xi ¡ x)2.

Sample A of size 8 has sample variance s 2
A = 4:2 .

Sample B of size 22 has sample variance s 2
B = 5:1 .

a Use each of the samples A and B to find two unbiased estimates of ¾2.

b Let t1 =
8s 2

A
+ 22s 2

B

30
.

i Calculate the estimate t1 of ¾2.

ii Is t1 a biased or unbiased estimate of ¾2? Explain your answer.

c Let t2 =
as 2

A
+ bs 2

B

c
.

State the required conditions on a, b, c 2 R + for t2 to be an unbiased estimate of ¾2.

¹ (mL) ¾ (mL)

small bottles 338 3

large bottles 1010 12

1 A soft drink manufacturer produces small and large

bottles of drink. The volumes of both sizes of drink

are normally distributed with means and standard

deviations given in the table alongside.

a Find the probability that one large bottle selected at random will contain more than the

combined contents of three smaller bottles selected at random.

b Find the probability that one large bottle selected at random will contain three times more

than one smaller bottle selected at random.

2 Patients arrive at random to the hospital Emergency room, at a rate of 14 per hour. Find the

probability that:

a exactly five patients arrive between 9:00 am and 9:45 am

b fewer than seven patients will arrive between 10:00 am and 10:30 am.
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154 STATISTICS AND PROBABILITY

3 The random variable X » B(n, p) has E(X) = 8 and Var(X) = 6.

a Find n and p.

b Find: i P(X > 4) ii P(7:9 6 X 6 8:1)

4 The normal PDF with parameters ¹ and ¾2 is f(x) =
1p
2¼¾

e
¡ 1

2

¡
x¡¹

¾

¢2
for x 2 ]¡1, 1[ .

Use f(x) to find the exact value of

Z 1

¡1
e
¡ 1

8
(x¡9)2

dx.

5 The PGF for the continuous random variable X with a Gamma distribution is

G(t) = (1 ¡ ¯ ln t)¡®¡1
, where ® and ¯ are parameters.

a Assuming ¹ = G0(1) and Var(X) = G00(1) +G0(1) ¡ [G0(1)]2, show that the mean of

the Gamma distribution is ¹ = (® + 1)¯.

b Hence determine the variance of the Gamma distribution.

6 The random variable X has a normal distribution with mean ¹. A randomly selected sample of

size 15 is taken, and it is found that
15P
i=1

(xi ¡ x)2 = 230.

a Find the sample variance for this sample.

b Find an unbiased estimate of the population variance for the random variable X.

c A confidence interval for ¹ (not the 95% confidence interval) taken from this sample is

]124:94, 129:05[ .

i Find the 95% confidence interval for ¹ taken from this sample.

ii

7 In order to estimate the copper content of a potential mine, drill core samples are used. All of

the drill core is crushed and well mixed before samples are removed.

Suppose X is the copper content in grams per kilogram of core, and that X is normally distributed

with mean ¹ = 11:4 and ¾ = 9:21.

Samples of size 9 are randomly chosen from the X-distribution.

Histograms A and B (shown below) are for the X and X distributions, not necessarily in that

order.

a Which of these histograms is the histogram for X? Explain your answer.

b For the X-distribution, find the mean ¹
X

and variance ¾ 2
X

.

c Find P(X > 12).

d Another drill core is obtained and Y is the average copper content of n random samples.

With the assumption that ¾X = ¾Y = 9:21, find how large n should be for Y to be

within §3 grams per kg of ¹
Y

with 95% probability.

frequency

0 10 20 30

A
frequency

B

0 10 20 30 40 50

Determine the confidence level for the confidence interval ]124:94, 129:05[ .
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STATISTICS AND PROBABILITY 155

10 Quickchick grow chickens to sell to a supermarket chain. However, the buyers believe that the

chickens are supplied underweight. As a consequence they consider the hypotheses:

H0: Quickchick is not supplying underweight chickens

H1: Quickchick is supplying underweight chickens.

What conclusion would result in: a a type I error b a type II error?

11 An archer shoots 10 arrows at a target from each of 12 different positions. The table below

shows the distance of each position from the target, and how many shots were successful.

Position A B C D E F G H I J K L

Distance from target (x m) 20 25 15 35 40 55 30 45 60 80 65 70

Hits (y) 9 8 8 8 7 6 9 7 4 2 3 3

a Draw a scatter plot of the data.

b Calculate the sample correlation coefficient r.

c Comment on the strength of the correlation between

X and Y .

d Is there a causal relationship between the variables?

e Find the equation of the regression line of Y on X.

f Predict the number of hits made from 50 m if the

archer shoots 100 arrows.

g Should the regression line be used to predict the

number of hits when arrows are fired from 100 m?

Explain your answer.

h Find the equation of the regression line of X on Y .

8 A large business uses hundreds of light bulbs

each year. They currently use Brand A bulbs

which have a mean life of 546 hours. A

supplier of another brand, Brand B, will supply

bulbs at the same price as Brand A, and claims

that these bulbs have a mean life in excess of

546 hours.

The business will purchase Brand B bulbs if,

when they test a random sample of 50 bulbs,

the supplier’s claim is supported at a 5% level of significance. When the 50 bulbs were tested,

the mean life was 563 hours with a variance of 3417 hours2. Is the supplier’s claim acceptable?

9 The random variable X has a geometric distribution with unknown parameter p. Theo wishes

to test the hypothesis H0: p = 0:25 against H1: p 6= 0:25.

A random sample fx1, x2, x3, ...., x12g of independent values is taken from X, with

replacement.

The critical region is defined as

½
12P
i=1

xi 6 31

¾
[
½

12P
i=1

xi > 75

¾
.

a If S =
12P
i=1

xi, what is the distribution of S under H0?

b What is the acceptance region for S under the null hypothesis H0?

c Calculate the level of significance ® for this test.

d The true value of p is p = 0:2 . Calculate the power of the test.
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156 STATISTICS AND PROBABILITY

12 X is a random variable with unknown mean ¹ and unknown variance ¾2.

Consider samples of size 2, fx1, x2g, of independent values taken from X.

Let T1 =
2X1 +X2

3
and T2 = aX1 + (1 ¡ a)X2 for some constant a 2 [0, 1].

a For each estimator T1 and T2, determine whether it is a biased or unbiased estimator of ¹.

b Calculate Var(T1) and Var(T2).

c For which value(s) of a is T2 a more efficient estimator than T1?

d For which value of a 2 [0, 1] is the estimator T2 most efficient?

13 Suppose X and Y are independent random variables with E(X) = ¹X , Var(X) = ¾ 2
X ,

E(Y ) = ¹Y , and Var(Y ) = ¾ 2
Y .

A random sample of size n is taken from X, and the sample mean x and s 2
X =

nP
i=1

(xi ¡ x)2

n¡ 1

are calculated.

Similarly, a sample of size m is taken from Y , and the sample mean y and s 2
Y =

mP
i=1

(yi ¡ y)2

m¡ 1
are calculated.

Let U = 3X ¡ 5Y .

a Find E(U) and Var(U) in terms of ¹X , ¹Y , ¾ 2
X , and ¾ 2

Y where appropriate.

b If aS 2
X+bS 2

Y is an unbiased estimate of Var(U), write down the values of the constants

a and b.
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THE CENTRAL LIMIT THEOREMTHEORY OF KNOWLEDGE

STATISTICS AND PROBABILITY 157

The French mathematician Abraham de Moivre is most famous

for his formula linking complex numbers and trigonometry, but he

was also responsible for the early development of the Central Limit

Theorem. In an article from 1733, he used the normal distribution to

approximate the distribution of the number of heads resulting from

many tosses of a fair coin.

The work of de Moivre was extended in 1812 by country-man

Pierre-Simon Laplace, but the theorem was not formalised and

rigorously proven until the early 20th century work of the

Russian mathematicians Pafnuty Chebyshev, Andrey Markov, and

Aleksandr Lyapunov.

In 1889, Sir Francis Galton wrote about the normal distribution, with

particular relevance to the Central Limit Theorem:

“I know of scarcely anything so apt to impress the imagination as the wonderful form of cosmic

order expressed by the law of frequency of error. The law would have been personified by the

Greeks if they had known of it. It reigns with serenity and complete self-effacement amidst

the wildest confusion. The larger the mob, the greater the apparent anarchy, the more perfect

is its sway. It is the supreme law of unreason.”

1 How is mathematical order linked to our sense of beauty?

The name “Central Limit Theorem” was first used in 1920 by the Hungarian mathematician George

Pólya (1887-1985). He used the word “central” because of the importance of the theorem in

probability theory.

2 What makes a theorem “fundamental”? Could the Central Limit Theorem reasonably be

referred to as the Fundamental Theorem of Statistics?

3 Discuss the statement: “Without the Central Limit Theorem, there could be no statistics of

any value within the human sciences.”

The philosophies of rationalism and empiricism concern the extent to which we are dependent upon

sense experience in order to gain knowledge.

Rationalists claim that knowledge can be gained through logic independent of sense experience. They

argue about the limitations of what sense experience can provide, and how reason in other forms

contributes additional information about the world.

By contrast, empiricists claim that sense experience is most important for knowledge, arguing that

we cannot regard something as knowledge if experience cannot provide it.

4 Is it more important to rationalise the Central Limit Theorem by mathematical proof, or

confirm its truth by empirical application?

Abraham de Moivre
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POPULATION PARAMETERSTHEORY OF KNOWLEDGE

158 STATISTICS AND PROBABILITY

In previous courses we have seen that data collected from a population may be qualitative or

quantitative.

However, there are other properties of parameters that can affect how we need treat them. We may

need to sample for data in a particular way, or word questions carefully so the person responding

understands the context in which the question is being asked.

Data is objective if the result of its measurement is clear.

For example:

² The number of cousins you have is objective, quantitative, and discrete.

² A person’s height, and weight are all objective, quantitative, and continuous.

² Either a person is infected with HIV, or they are not, so this parameter is objective and qualitative.

By contrast, data is subjective if the result of its measurement depends on individual interpretation,

and is relative to the individual’s own experiences.

For example:

² The colour of a person’s shirt is subjective and qualitative.

For some colours like black and white, people will agree on

the result, but people may argue about whether a shirt is red

or pink, or perhaps blue or purple.

² A person’s mood is subjective and qualitative. We can ask

a person to rate themselves on a scale of sad to happy, or

confident to fearful, but some states such as angry do not

necessarily have defined opposites. Moods are also transitive

in the sense that they can change rapidly, so a data set correct

at the time of measurement may be very different to that

which would be measured from the same sample of people

soon after.

1 Is subjective data just the product of a vague question? For example, can the question “How

many friends do you have?” be refined so it is no longer subjective?

2 Are statistics gathered on transitive parameters less meaningful?

3 What do you regard as the most important things in life? Are these things qualitative or

quantitative? Are they objective or subjective? Are they transitive?

4 To what extent is “well-being” a social construct?

5 What sort of social consciousness is necessary for a subjective response to fit into the broader

context of society?

6 Does the ability to test only certain parameters in a population affect the way knowledge

claims in the human sciences are valued?

The measurement of performance poses particular challenges for statisticians because a contextual

framework needs to be set in which the performance is measured.

For example, the performance of an athlete may be measured by how fast they run, how high they

jump, or how far they throw, but in doing this we require a standard for comparison. Do we compare

the results of an athlete to those of other athletes of the same age or the same gender or the same race
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STATISTICS AND PROBABILITY 159

or the same body physique, or against all athletes in the world? Or is it more important to compare

the athlete’s results against themselves and what is physically achieveable for the individual?

7 How can we measure evolutionary success? You may wish to think about number of progeny,

life-span of a species, and diversity within a species.

8 How can we measure the performance of an organisation? Should the performance be measured

by its owners, its managers, its employees, or its customers? How does profit balance against

service, or company mission?
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160 WORKED SOLUTIONS

EXERCISE A

1 X » N(5, 22). ¾2 = 22

) ¾ =
p
22

a P(X = 24) = P(23:5 6 X < 24:5)

¼ 0:000 023 9

b P(X = 30) = P(29:5 6 X < 30:5)

¼ 0:000 000 060 8

c P(X = 11) = P(10:5 6 X < 11:5)

¼ 0:0376

2 a E(X) = ¡1( 1
2
) + 1( 1

3
) + 3( 1

6
)

= ¡ 1
2
+ 1

3
+ 1

2

= 1
3

b X » U(0, 5)

E(X) =

Z 5

0

x f(x) dx

=

Z 5

0

x( 1
5
) dx

= 1
5

·
x2

2

¸ 5
0

= 1
5
£ 25

2

= 2:5

3 x ¡3 ¡1 2 3

P(X = x) 1
6

1
3

1
3

1
6

a E(X) =
P

xipi

= ¡3( 1
6
)¡ 1( 1

3
) + 2( 1

3
) + 3( 1

6
)

= ¡ 1
2
¡ 1

3
+ 2

3
+ 1

2

= 1
3

Possible X2 values are 1, 4, and 9.

P(X2 = 1) = P(X = ¡1 or 1)

= P(X = ¡1)

= 1
3

P(X2 = 4) = P(X = 2 or ¡2)

= P(X = 2)

= 1
3

P(X2 = 9) = P(X = 3 or ¡3)

= 1
3

) E(X2) =
P

x 2
i pi

= 1( 1
3
) + 4( 1

3
) + 9( 1

3
)

= 14
3

b E(X2) = 14
3

and (E(X))2 = 1
9

) E(X2) 6= (E(X))2

4 a i x 0 1 2

Probability 1
4

1
2

1
4

x2 0 1 4

Probability 1
4

1
2

1
4

For example: P(X2 = 4) = P(X = 2 or ¡2)

= 1
4
+ 0 = 1

4

ii y 1 2 3 4 5 6

Probability 1
6

1
6

1
6

1
6

1
6

1
6

y2 1 4 9 16 25 32

Probability 1
6

1
6

1
6

1
6

1
6

1
6

iii x+ y 1 2 3 4 5 6 7 8

Probability 1
24

1
8

1
6

1
6

1
6

1
6

1
8

1
24

For example: P(X + Y = 5)

= P(X = 0, Y = 5 or X = 1, Y = 4,

or X = 2, Y = 3)

= ( 1
4
)( 1

6
) + ( 1

2
)( 1

6
) + ( 1

4
)( 1

6
)

= 1
6

(x+ y)2 1 4 9 16 25 36 49 64

Probability 1
24

1
8

1
6

1
6

1
6

1
6

1
8

1
24

iv 4x¡ 2y ¡12 ¡10 ¡8 ¡6 ¡4 ¡2 0 2 4 6

Probability 1
24

1
24

1
8

1
8

1
6

1
6

1
8

1
8

1
24

1
24

(4x¡ 2y)2 0 4 16 36 64 100 144

Probability 1
8

7
24

5
24

1
6

1
8

1
24

1
24

For example: P((4X ¡ 2Y )2 = 4)

= P(4X ¡ 2Y = 2 or ¡2)

= 1
8
+ 1

6

= 7
24

v xy 0 1 2 3 4 5 6 8 10 12

Prob. 1
4

1
12

1
8

1
12

1
8

1
12

1
8

1
24

1
24

1
24

(xy)2 0 1 4 9 16 25 36 64 100 144

Prob. 1
4

1
12

1
8

1
12

1
8

1
12

1
8

1
24

1
24

1
24

b i E(X) = 0( 1
4
) + 1( 1

2
) + 2( 1

4
) = 1

Var(X) = E(X2)¡ [E(X)]2

= 0( 1
4
) + 1( 1

2
) + 4( 1

4
)¡ 12

= 1
2

ii E(Y ) = 1( 1
6
) + 2( 1

6
) + 3( 1

6
) + 4( 1

6
) + 5( 1

6
) + 6( 1

6
)

= 3:5

Var(Y ) = E(Y 2)¡ [E(Y )]2

= 1( 1
6
) + 4( 1

6
) + 9( 1

6
) + 16( 1

6
) + 25( 1

6
)

+ 36( 1
6
)¡ 3:52

¼ 2:92

Worked Solutions

Qt

5

y

x

y = f(x)
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WORKED SOLUTIONS 161

iii E(X + Y ) = 1( 1
24

) + 2( 1
8
) + 3( 1

6
) + 4( 1

6
) + 5( 1

6
)

+ 6( 1
6
) + 7( 1

8
) + 8( 1

24
)

= 4:5

Var(X + Y ) = E((X + Y )2)¡ [E(X + Y )]2

= 1( 1
24

) + 4( 1
8
) + 9( 1

6
) + 16( 1

6
) + 25( 1

6
)

+ 36( 1
6
) + 49( 1

8
) + 64( 1

24
)¡ 4:52

¼ 3:42

iv E(4X ¡ 2Y )

= ¡12( 1
24

)¡ 10( 1
24

)¡ 8( 1
8
)¡ 6( 1

8
)¡ 4( 1

6
)

¡ 2( 1
6
) + 0( 1

8
) + 2( 1

8
) + 4( 1

24
) + 6( 1

24
)

= ¡3

Var(4X ¡ 2Y )

= E((4X ¡ 2Y )2)¡ [E(4X ¡ 2Y )]2

= 0( 1
8
) + 4( 7

24
) + 16( 5

24
) + 36( 1

6
) + 64( 1

8
)

+ 100( 1
24

) + 144( 1
24

)¡ (¡3)2

¼ 19:7

v E(XY )

= 0( 1
4
) + 1( 1

12
) + 2( 1

8
) + 3( 1

12
) + 4( 1

8
) + 5( 1

12
)

+ 6( 1
8
) + 8( 1

24
) + 10( 1

24
) + 12( 1

24
)

= 3:5

Var(XY )

= E((XY )2)¡ [E(XY )]2

= 0( 1
4
) + 1( 1

12
) + 4( 1

8
) + 9( 1

12
) + 16( 1

8
) + 25( 1

12
)

+ 36( 1
8
) + 64( 1

24
) + 100( 1

24
) + 144( 1

24
)¡ 3:52

= 10:5

c i E(X + Y ) = 4:5

E(X) + E(Y ) = 1 + 3:5 = 4:5 X

Var(X + Y ) ¼ 3:42

Var(X) + Var(Y ) ¼ 1
2
+ 2:917 ¼ 3:42 X

ii E(4X ¡ 2Y ) = ¡3

4E(X)¡ 2E(Y ) = 4£ 1¡ 2£ 3:5

= 4¡ 7

= ¡3 X

Var(4X ¡ 2Y ) ¼ 19:7

16Var(X) + 4Var(Y ) ¼ 16( 1
2
) + 4(2:917)

¼ 19:7 X

iii E(XY ) = 3:5

E(X)E(Y ) = 1£ 3:5 = 3:5 X

5 E(X) = 3, E(Y ) = 2, Var(X) = 3
2

, Var(Y ) = 5
4

If X and Y are independent,

a E(X + Y )

= E(X) + E(Y )

= 3 + 2

= 5

b E(XY )

= E(X)E(Y )

= 3£ 2

= 6

c Var(2X ¡ 3Y + 6)

= 4Var(X) + 9Var(Y ) + Var(6)

= 4( 3
2
) + 9( 5

4
) + 0

= 17:25

d E(5XY ) = 5E(XY )

= 5£ 6

= 30

If X and Y are dependent, E(X + Y ) = 5.

However, E(XY ), Var(2X ¡ 3Y + 6), and E(5XY ) can

only be determined if X and Y are independent.

6 a x 0 1 2 3

Probability 1
4

1
4

1
4

1
4

E(X) = 0( 1
4
) + 1( 1

4
) + 2( 1

4
) + 3( 1

4
)

) E(X) = 3
2

y = x2 0 1 4 9

Probability 1
4

1
4

1
4

1
4

) E(X2) = 0( 1
4
) + 1( 1

4
) + 4( 1

4
) + 9( 1

4
)

) E(Y ) = 7
2

xy = x3 0 1 8 27

Probability 1
4

1
4

1
4

1
4

) E(XY ) = 0( 1
4
) + 1( 1

4
) + 8( 1

4
) + 27( 1

4
)

= 9

E(X)E(Y ) = 3
2
£ 7

2
= 21

4
6= E(XY )

b x ¡1 0 1 2

Probability 1
4

1
4

1
4

1
4

E(X) = ¡1( 1
4
) + 1( 1

4
) + 2( 1

4
)

) E(X) = 1
2

y = x2 0 1 4

Probability 1
4

1
2

1
4

E(Y ) = 1( 1
2
) + 4( 1

4
)

) E(Y ) = 1 1
2

xy = x3 ¡1 0 1 8

Probability 1
4

1
4

1
4

1
4

) E(XY ) = ¡1( 1
4
) + 1( 1

4
) + 8( 1

4
)

= 2

) E(X)E(Y ) = 3
4
6= E(XY )

7 a E(X) = 3:8, E(Y ) = 5:7

E(3X ¡ 2Y ) = 3E(X)¡ 2E(Y )

= 3£ 3:8¡ 2£ 5:7

= 0

Var(3X ¡ 2Y ) = 9Var(X) + 4Var(Y )

= 9£ 0:3232 + 4£ 1:022

= 5:100 561

) the standard deviation of 3X¡2Y is
p
5:100 561 which

is ¼ 2:26 .

b By Theorem 8, the linear combination 3X ¡ 2Y of

independent normally distributed random variables X and Y

is also normally distributed

) 3X ¡ 2Y » N(0, 2:258 442)

Thus P(3X ¡ 2Y > 3)

¼ 0:0920 fusing technologyg
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162 WORKED SOLUTIONS

8 X » N(¹, ¾2)

Now P(X > 80) = 0:1 and P(X > 65) = 0:3

) P(X < 80) = 0:9 and P(X < 65) = 0:7

) P

³
X ¡ ¹

¾
<

80¡ ¹

¾

´
= 0:9 and

P

³
X ¡ ¹

¾
<

65¡ ¹

¾

´
= 0:7

) P

³
Z <

80¡ ¹

¾

´
= 0:9 and P

³
Z <

65¡ ¹

¾

´
= 0:7

) 80¡ ¹

¾
¼ 1:281 55 and

65¡ ¹

¾
¼ 0:524 40

) 80¡ ¹ ¼ 1:281 55¾ and 65¡ ¹ ¼ 0:524 40¾

Solving simultaneously ¹ ¼ 54:6 and ¾ ¼ 19:8

9 Let A be the random variable for the weight of an adult and

C be the random variable for the weight of a child.

So, A » N(81, 112) and C » N(48, 42).

Consider the random variable S where

S = A1 +A2 +A3 +A4 +C1 +C2 +C3

Now E(S) = E(A1) + E(A2) + E(A3) + ::::+ E(C3)

= 4£ 81 + 3£ 48

= 468

and Var(S) = Var(A1) + Var(A2) + ::::+ Var(C3)

= 4£ 112 + 3£ 42

= 532

and S » N(468, 532)

) P(S > 440) ¼ 0:888

Assumption: The random variables A1, A2, A3, A4, C1, C2,

and C3 are independent.

10 Let C be the amount of black coffee dispensed and let F be the

amount of froth.

Then C » N(120, 72) and F » N(28, 4:52)

Consider S = C + F

E(S) = E(C) + E(F )

= 120 + 28

= 148 mL

Var(S) = Var(C) + Var(F )

= 49 + 4:52

= 69:25 mL2

P(U < 135:5) ¼ 0:0665 ¼ 6:65% which is greater than 1%

) proprietor needs to adjust the machine.

11 X » N(¡10, 1) and Y » N(25, 25)

a E(U) = E(3X + 2Y )

= 3E(X) + 2E(Y )

= 3(¡10) + 2(25)

= 20

Var(U) = 9Var(X) + 4Var(Y )

= 9(1) + 4(25)

= 109

) standard deviation of U ¼ 10:4

b P(U < 0) ¼ 0:0277 fusing technologyg

12 S » N(280, 4) and L » N(575, 16)

a We need to find P(L < 2S), which is P(L¡ 2S < 0).
If D = L¡ 2S,

E(D) = E(L)¡ 2E(S)

= 575¡ 2£ 280

= 15

and Var(D) = Var(L) + 4Var(S)

= 16 + 4£ 4

= 32

) D » N(15, 32)

and P(D < 0) ¼ 0:004 01 fusing technologyg
b Now we need to find

P(L < S1 + S2)

= P(L¡ S1 ¡ S2 < 0)

where E(L¡ S1 ¡ S2)

= E(L)¡ E(S1)¡ E(S2)

= 575¡ 280¡ 280

= 15

and Var(L¡ S1 ¡ S2) = Var(L) + Var(S1) + Var(S2)

= 16 + 4 + 4

= 24

Thus L¡ S1 ¡ S2 » N(15, 24)

and P(L¡S1 ¡S2 < 0) ¼ 0:001 10 fusing technologyg

13 a S » N(21, 5) and L » N(90, 15)

We need to find P(L > 5S)

= P(L¡ 5S > 0)

Now E(L¡ 5S) = E(L)¡ 5E(S)

= 90¡ 5£ 21

= ¡15

and Var(L¡ 5S) = Var(L) + 25Var(S)

= 15 + 25£ 5

= 140

) L¡ 5S » N(¡15, 140)

and P(L¡ 5S > 0) ¼ 0:102 fusing technologyg
b We need to find P(L > S1 + S2 + S3 + S4 + S5)

= P(L¡ S1 ¡ S2 ¡ S3 ¡ S4 ¡ S5 > 0)

Now E(L¡ S1 ¡ S2 ¡ S3 ¡ S4 ¡ S5)

= E(L)¡ E(S1)¡ E(S2)¡ E(S3)¡ E(S4)¡ E(S5)

= 90¡ 21¡ 21¡ 21¡ 21¡ 21

= ¡15

and Var(L¡ S1 ¡ S2 ¡ S3 ¡ S4 ¡ S5)

= Var(L) + Var(S1) + Var(S2) + Var(S3) + Var(S4)

+ Var(S5)

= 15 + 5£ 5

= 40

) L¡ S1 ¡ S2 ¡ S3 ¡ S4 ¡ S5 » N(¡15, 40)

and P(L¡ S1 ¡ S2 ¡ S3 ¡ S4 ¡ S5 > 0)

¼ 0:008 85

14 a As
P

P (x) = 1 in each distribution, each is a well defined

probability distribution.

b ¹X = E(X)

=
P

xP (x)

= ¡3(0:25)¡ 2(0:25) + 3(0:25) + 5(0:25)

= 0:75
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WORKED SOLUTIONS 163

Var(X)

= E(X2)¡ [E(X)]2

= 9(0:25) + 4(0:25) + 9(0:25) + 25(0:25)¡ 0:752

= 47£ 0:25¡ 0:752

= 11:1875 and so ¾X ¼ 3:34

¹Y = E(Y ) = ¡3(0:5) + 2(0:3) + 5(0:2)

= 0:1

Var(Y ) = E(Y 2)¡ [E(Y )]2

= 9(0:5) + 4(0:3) + 25(0:2)¡ 0:12

= 10:69 and so ¾Y ¼ 3:27

c With X, the expected win is $0:75/game. However, it

costs $1 to play each game, so there is an expected loss of

$0:25/game. With Y there is an expected loss of $0:90/game.

d As ¾X > ¾Y we expect greater variation in the results of

game X.

e i

P(¡6) = 0:25£ 0:5

= 0:125

P(¡5) = 0:25£ 0:5

= 0:125

P(¡1) = 0:25£ 0:3

= 0:075

P(0) = 0:25£ 0:5

+ 0:25£ 0:3

= 0:200

P(2) = 0:25£ 0:2

+ 0:25£ 0:5

= 0:175

P(3) = 0:25£ 0:2

= 0:050

P(5) = 0:25£ 0:3

= 0:075

P(7) = 0:25£ 0:3

= 0:075

P(8) = 0:25£ 0:2

= 0:050

P(10) = 0:25£ 0:2

= 0:050

X + Y ¡6 ¡5 ¡1 0 2

P(X + Y ) 0:125 0:125 0:075 0:2 0:175

X + Y 3 5 7 8 10

P(X + Y ) 0:05 0:075 0:075 0:05 0:05

ii U = X + Y

E(U) = ¡6(0:125)¡ 5(0:125)¡ 1(0:075)

+ ::::+ 10(0:05)

= 0:85

) ¹U = 0:85

Var(U) = 36(0:125) + 25(0:125) + 1(0:075)

+ ::::+ 100(0:05)¡ (0:85)2

= 21:8775

) ¾U ¼ 4:68

iii With the new game there is an expected loss of

$1 ¡ $0:85 = $0:15/game.

EXERCISE B.1

1 a x 5 10 15 20 25 30

P(X = x) k k k k k k

6k = 1

) k = 1
6

The probability distribution is:

x 5 10 15 20 25 30

P(X = x) 1
6

1
6

1
6

1
6

1
6

1
6

b ¹ = E(X)

= 5( 1
6
) + 10( 1

6
) + 15( 1

6
) + ::::+ 30( 1

6
)

= 17:5

c P(X < ¹) = P(X < 17:5)

= P(X = 5, 10, or 15)

= 1
6
+ 1

6
+ 1

6

= 1
2

d Var(X) = E(X2)¡ [E(X)]2

= 25( 1
6
) + 100(1

6
) + 225( 1

6
) + 400(1

6
)

+ 625(1
6
) + 900( 1

6
)¡ 17:52

= 72:916 66::::

) ¾ =
p

Var(X) ¼ 8:54

2 a P(X = 1) = 3
4
= p

P(X = 0) = 1
4
= 1¡ p

) X » B(1, 3
4
)

b F (x) =
xP

k=0

pk(1¡ p)1¡k

) F (0) = ( 3
4
)0( 1

4
)1 = 1

4

F (1) = ( 3
4
)0( 1

4
)1 + ( 3

4
)1( 1

4
)0 = 1

Interpretation:

F (0) is the probability of ‘no reds’

F (1) is the probability of ‘at most one red’

‘at most one red’ is 0 reds or 1 red which is a certain event.

3 X » B(7, p) where p < 0:5 .

P(X = 4) =
¡
7
4

¢
p4(1¡ p)3 = 0:097 24

) 35p4(1¡ p)3 = 0:097 24

) p4(1¡ p)3 ¼ 0:002 778 29

) p ¼ 0:299 999 43 or 0:815 481 36

But p < 0:5, so p ¼ 0:300

and P(X = 2) =
¡
7
2

¢
(0:3)2(0:7)5

¼ 0:318

4 p = 0:35 is the probability of rain on an August day.

X » B(7, 0:35)

a P(X = 3) =
¡
7
3

¢
(0:35)3(0:65)4

¼ 0:268

b P(X > 3) = 1¡ P(X 6 2)

¼ 0:468

c P(X 6 3) ¼ 0:800

Y

X

-3

2

5

-3 -2 3 5

(0 2).

(0 3).

(0 5).

(0 25). (0 25). (0 25). (0 25).

X Y values+

2

-1

-6 -5 0 2

7

108

50

3
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164 WORKED SOLUTIONS

d Days of rain: D1 D2 D3

1st 2nd 3rd

2nd 3rd 4th

3rd 4th 5th

4th 5th 6th

5th 6th 7th

9>>=>>; 5

) P(rains on exactly 3 days in succession)

= 5£ (0:35)3(0:65)4

¼ 0:0383

Assumptions:

Rain falling on any day is independent of rain falling on any

other day.

X » B(20, 0:7)

a P(X > 11) = 1¡ P(X 6 10)

¼ 0:952

b Y » B(70, 0:7)

¹ = np = 70£ 0:7 = 49 letters

¾ =
p

np(1¡ p)

=
p
70£ 0:7£ 0:3

¼ 3:83

8

a P(Is j P)

=
P(P j Is)P(Is)

P(P)
fBayes Theoremg

=
(0:25)(0:7)

(0:4)(0:7) + (0:2)(0:45) + (0:25)(0:7) + (0:15)(0:4)

¼ 0:289

b For one parcel,

P(leaves state j S)

=
P(S j leaves state)P(leaves state)

P(S)

=
(0:25)(0:3) + (0:15)(0:6)

(0:4)(0:3) + (0:2)(0:55) + (0:25)(0:3) + (0:15)(0:6)

¼ 0:417 72

If X is the number of parcels selected then

X » B(2, 0:417 72) and P(X = 1) ¼ 0:486.

Assumption: The events are independent.

9 a There are 7 multiples of 7 which are < 50.

) P(multiple of 7) = 7
50

= 0:14

b Let X = number of multiples of 7 obtained in 500 spins.

Then X » B(500, 0:14)

Now 15% of 500 = 75 and

P(X > 75) = 1¡ P(X 6 75)

¼ 0:237 fusing technologyg
c i E(X) = np

= 500£ 0:14

= 70

) the school expects to make in 500 spins

(500¡ 70) £ $20¡ 70 £ $100 = $1600

EXERCISE B.2

1 X » Geo(0:25)

a P(X = 4)

= p(1¡ p)3

= 0:25£ (0:75)3

¼ 0:105

b P(X 6 2)

= P(X = 1 or 2)

= p+ p(1¡ p)

= 0:4375

P

S

P

S

P

S

P

S

X

X

X

L

C

Is

In

0 4.

0 2.

0 25.

0 15.

0 7.
0 3.

0 45.

0 55.

0 7.
0 3.

0 4.
0 6.

5 Let X be the number of red pens selected.

Due to the very large number of pens, the number of reds selected

in n attempts is approximately X » B(n, 0:2)

Now P(X > 1) > 0:9

) P(X = 0) < 0:1

)
¡
n
0

¢
(0:2)0(0:8)n < 0:1

) (0:8)n < 0:1

) n log(0:8) < log(0:1)

) n >
log(0:1)

log(0:8)
= 10:318::::

) least n is n = 11.

We are assuming the binomial model even though it is not strictly

binomial.

6 a Let X be the number of cells failing in one year.

X » B(15, 0:7)

i P(X = 15) ¼ 0:004 75

ii P(still operating) = P(X 6 14)

¼ 1¡ 0:004 75

¼ 0:995 25

¼ 0:995

b P(still operating with n cells)

= P(X 6 n¡ 1)

= 1¡ P(X = n)

= 1¡ (0:7)n

c We need to find the smallest n such that

1¡ (0:7)n > 0:98

) (0:7)n 6 0:02

) n log(0:7) 6 log(0:02)

) n >
log(0:02)

log(0:7)

) n > 10:968::::

) least n is n = 11.

7 Let X = the number of letters addressed to the Accounts

Department.

ii The school loses if
(500¡X)20¡ 100X < 0

) 500¡X ¡ 5X < 0

) 6X > 500

) X > 83 1
3

and P(X > 83 1
3
) = 1¡ P(X 6 83)

¼ 0:0435
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WORKED SOLUTIONS 165

c P(X > 3)

= 1¡ P(X 6 3)

= 1¡ P(X = 1, 2, or 3)

= 1¡ [p+ p(1¡ p) + p(1¡ p)2]

¼ 0:422

2 X » Geo(p), then P(X = x) = p(1¡ p)x¡1

for x = 1, 2, 3, 4, 5, .... .

Now
1P
i=1

P(X = i) = P(X = 1) + P(X = 2) + P(X = 3) + ::::

= p+ p(1¡ p) + p(1¡ p)2 + p(1¡ p)3 + ::::

= p[1 + (1¡ p) + (1¡ p)2 + (1¡ p)3 + ::::]

= p

·
1

1¡ (1¡ p)

¸
fas 1 + (1¡ p) + (1¡ p)2 + :::: is an infinite GS

with u1 = 1 and r = 1¡ p with 0 < r < 1.g

= p

·
1

p

¸
= 1

) the probability distribution is well defined.

3 a X » Geo(0:29) Using technology,

) P(X = 4) ¼ 0:104

b Y » NB(3, 0:29)

) P(X = 7) =
¡
6
2

¢
(0:29)3(0:71)4

¼ 0:0930

4 X » Geo(p)

P(X = 3) = p(1¡ p)2 = 0:023 987

Solving using technology gives p = 0:83 fas p > 0:5g
and P(X > 3) = 1¡ P(X 6 2)

= 0:0289 fusing technologyg

5 a X = number of games needed for Eva to win 3 games

Then X » NB(3, 0:35)

b P(Eva beats Paul 3 games to 1)

= P(X = 4)

=
¡
3
2

¢
(0:35)3(0:65)1

¼ 0:0836

c P(Eva beats Paul in a match)

= P(X = 3, 4, or 5)

=
¡
2
2

¢
(0:35)3(0:65)0 +

¡
3
2

¢
(0:35)3(0:65)1

+
¡
4
2

¢
(0:35)3(0:65)2

¼ 0:235

6 a X » Geo(0:72)

) P(X = 5) ¼ 0:004 43

b Y » NB(4, 0:72)

) P(X = 12) =
¡
11
3

¢
(0:72)4(0:28)8

¼ 0:001 68

7 X » Geo(0:15)

a P(first snow on Nov 15)

= P(X = 15)

¼ 0:0154

b P(snow falls on or before n days)

= 1¡ P(snow does not fall in n days)

= 1¡ (0:85)n

So, we need to solve

1¡ (0:85)n > 0:85

) (0:85)n < 0:15

Thus, n log(0:85) < log(0:15)

) n >
log(0:15)

log(0:85)
f log 0:85 < 0g

) n > 11:673::::

) least n is n = 12
) must book for Dec 12.

8 a Difference table

Die 2

6 5 4 3 2 1 0

5 4 3 2 1 0 1

4 3 2 1 0 1 2

3 2 1 0 1 2 3

2 1 0 1 2 3 4

1 0 1 2 3 4 5

1 2 3 4 5 6

Die 1

P(difference is no more than 3) = 30
36

= 5
6

b X » G( 5
6
)

) P(player 1 is first to start on 2nd roll)

= P(X = 5) fall 4 players fail on 1st attemptg
¼ 0:000 643

EXERCISE B.3

1 a P(X = x) =
mxe¡m

x!
for x = 0, 1, 2, 3, 4, ....

P(X = 2) = P(X = 0) + 2P(X = 1)

)
m2e¡m

2!
=

e¡m

0!
+

2me¡m

1!

)
m2

2
= 1 + 2m

) m2 = 4m+ 2

) m2 ¡ 4m¡ 2 = 0

) m =
4§

p
16¡ 4(1)(¡2)

2

) m = 2§
p
6

But m > 0, so m = 2 +
p
6 ¼ 4:449 48::::

) ¹ ¼ 4:45

b P(1 6 X 6 5)

= P(X 6 5)¡ P(X = 0)

¼ 0:711 53¡ 0:011 68

¼ 0:700

2 a X is a Poisson random variable as the average number of

phone calls to the police per hour is constant. We assume

that the average number of calls each hour is constant.

b i Since 2Var(X) = [E(X)]2 ¡ 15,

2m = m2 ¡ 15

) m2 ¡ 2m¡ 15 = 0

) (m+ 3)(m¡ 5) = 0

) m = 5 fas m > 0g
) the mean is 5 calls/hour.
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166 WORKED SOLUTIONS

ii Thus X » Po(5) and P(X 6 3) ¼ 0:265.

3 a i The probability of a fault in a 50 m length = 50
1000

= 0:05

) X » Po(0:05)

) P(X = 0) ¼ 0:951

ii P(at most 2 faults in 50 m)

= P(X 6 2)

¼ 0:999 98 which is ¼ 1

b P(X 6 1) ¼ 0:9988 which is > 0:995
So, the chain is considered safe.

4 a Let X = number of internal calls, and

Y = number of external calls

) X » Po( 5
4
) and Y » Po( 10

6
), for 5 minutes.

The total number of calls each five minute session is X+Y

where E(X + Y ) = E(X) + E(Y )

= 5
4
+ 10

6

¼ 2:917

and Var(X + Y ) = Var(X) + Var(Y )

¼ 2:917 also

) X + Y » Po(2:917)

fassuming X and Y are independent random variablesg
) P(X + Y = 3) ¼ 0:224

b As E(X + Y ) ¼ 2:917, the receptionist should expect

3 calls each 5 minutes.

c i P(X + Y > 5) = 1¡ P(X + Y 6 5)

¼ 0:0758

ii 5 calls in 20 min = x calls in 7 min

) x = 7
4

10 calls in 30 min = y calls in 7 min

) y = 7
3

) E(X + Y ) = Var(X + Y ) = 7
4
+ 7

3
¼ 4:083

and P(X + Y > 5) = 1¡ P(X + Y 6 5)

¼ 0:228

fas X + Y » Po(4:083)g
5 a X » Po(m1) and Y » Po(m2) are two independent

random variables.

) P(X = x) =
m x

1 e¡m1

x!
and

P(Y = y) =
m

y
2 e¡m2

y!
Since X and Y are independent

P(X = x and Y = y)

= P(X = x)£ P(Y = y)

Now P(X + Y = k)

=
kP

i=0

[P(X = i and Y = k ¡ i)]

=
kP

i=0

[P(X = i)£ P(Y = k ¡ i)]

=
1P
i=0

m i
1 e

¡m1

i!
£ m k¡i

2 e¡m2

(k ¡ i)!

=
e¡m1¡m2

k!

1P
i=0

k!

i!(k ¡ i)!
m i

1m
k¡i
2

=
e¡(m1+m2)

k!
£ (m1 +m2)

k

fBinomial theoremg
Thus, X + Y is Poisson with mean m1 +m2.

b Pn is “If X1, X2, X3, ...., Xn are independent Poison

random variables with corresponding means m1, m2, m3,

...., mn then X1 + X2 + :::: +Xn is a Poisson random

variable with mean m1 +m2 +m3 + ::::+mn”

Proof by induction:

If n = 1, P(X = x) =
m x

1 e¡m1

x!
.

) P1 is true.

If Pj is true then X1 +X2 + ::::+Xj

has P(X1 +X2 + ::::+Xj = l) has PDF

(m1 +m2 + ::::+mj)
le¡(m1+m2+::::+mj)

l!
) P(X1 +X2 + ::::+Xj +Xj+1 = l) has PDF

lP
i=0

P(X1 +X2 + ::::+Xj = i and Xj+1 = l¡ i)

=
lP

i=0

"
(m1 +m2 + ::::+mj)

ie¡(m1+m2+::::+mj)

i!

£
m l¡i

j+1e
¡mj+1

(l¡ i)!

#

=
e¡(m1+m2+::::+mj+mj+1)

l!
£

lP
i=0

(m1 +m2 + ::::+mj)
i £m l¡i

j+1 £ l!

i!(l¡ i)!

=
e¡(m1+m2+::::+mj+1)

l!

£ (m1 +m2 + ::::+mj +mj+1)
l

Thus Pj+1 is true whenever Pj is true, and P1 is true.

) Pn is true. fPrinciple of mathematical inductiong

EXERCISE B.4

1 a ¹ =
1

p

= 1
0:333

¼ 3:00

b Var(X) =
q

p2

=
0:667

(0:333)2

¼ 6:015::::

) ¾ ¼ 2:45

2 a X » Geo(0:25)

) ¹ =
1

p

= 1
0:25

= 4 throws

b Y » NB(2, 0:25)

) ¹ =
r

p

= 2
0:25

= 8 throws

3 X » Geo(0:05)

a ¹ =
1

p

= 1
0:05

= 20 throws

b Var(X) =
q

p2

=
0:95

(0:05)2

) ¾ ¼
p
380

) ¾ ¼ 19:5 throws
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WORKED SOLUTIONS 167

4 X » DU(40)

a ¹ =
n+ 1

2
= 41

2

= 20:5

b Var(X) =
n2 ¡ 1

12

=
402 ¡ 1

12
= 133:25

) ¾ =
p
133:25

¼ 11:5

5 A X » Po(6). P(X = 3) ¼ 0:0892

B X » Po(1). P(X = 1) ¼ 0:3679

C X » Po(24). P(X = 17) ¼ 0:0308

As B has the highest probability it is the most likely to occur.

6 Let X = Yankees beat Redsox in a game

X » NB(4, 0:47)

a P(X = 5)

=
¡
4
3

¢
(0:47)4(0:53)1

¼ 0:103

b P(X = 7)

=
¡
6
3

¢
(0:47)4(0:53)3

¼ 0:145

c P(Redsox win)

= P(X = 0, 1, 2, or 3)

= 1¡ P(X = 4, 5, 6, or 7)

= 1¡
£¡

3
3

¢
(0:47)4(0:53)0 +

¡
4
3

¢
(0:47)4(0:53)1

+
¡
5
3

¢
(0:47)4(0:53)2 +

¡
6
3

¢
(0:47)4(0:53)3

¤
¼ 0:565

d X » NB(4, 0:53)

and E(X) =
r

p
= 4

0:53
¼ 7:547 games

This is the average number of games it would take them to

win without restriction, i.e., by playing as many games as they

need. However, in a World Series, no more than 7 games will

be played (assuming no draws) to decide the winner.

7 a If X is the number of attempts needed then X » Geo(0:62).
This assumes that attempts are independent and the

probability of getting through remains constant.

b P(X > 3) = 1¡ P(X 6 2)

¼ 0:144

c ¹ =
1

p

= 1
0:62

¼ 1:61

¾ =

r
1¡ p

p2

=

r
1¡ 0:62

0:622

¼ 0:994

8 Let X = the number who do not arrive.

a Then X » (255, 0:0375)

b P(more than 250 arrive)

= P(X 6 4)

¼ 0:0362

c P(there are empty seats)

= P(X > 6)

= 1¡ P(X 6 5)

¼ 0:918

d i ¹ = np

= 255£ 0:0375

¼ 9:56

ii ¾2 = np(1¡ p)

= 9:20

e As ¹ ¼ ¾2, n > 50 and p 6 0:1 a Poisson distribution

could be used to approximate the binomial distribution where

X » Po(10).

i P(X 6 4) ¼ 0:0293

ii P(X > 6) = 1¡ P(X 6 5)

¼ 0:933

f The Poisson approximation is reasonably good.

9 a X = a return from playing the game

= ¡E14:90, ¡E14:80, ¡E14:70, ¡E14:60, ¡E14:50,

¡E14:40, ¡E14:30, E0, E15, E85

b E(X) =
P

pixi

= 1
10

(¡14:90) + 1
10

(¡14:80) + 1
10

(¡14:70)

+ ::::+ 1
10

(85) Euro

= ¡E0:22

and Var(X) =
P

x 2
i p¡ [E(X)]2

= (¡14:90)2(0:1) + (¡14:80)2(0:1)

+ ::::+ (85)2(0:1)¡ (¡0:22)2

¼ 894

c If X » DU(10), it assumes that X has values 1, 2, 3, 4,

...., 10 which is not the case here.

d i For a game costing E15 the expected loss is 22 cents

) for a game costing E14:80 the expected loss is 2 cents

) the smallest amount is E14:80 .

ii For each game E(X) = ¡E1:22
) for 1000 games they would expect to make

1000 £ E1:22 = E1220

10 a X » Geo( 1
8
)

Assumptions:

² each call is made with probability 1
8

of success

² calls are independent of each other

b E(X) =
1

p
= 8, Var(X) =

1¡ p

p2

=

7
8

1
64

= 56

) ¹ = 8 and ¾ ¼ 7:48

c P(X < 5) = P(X 6 4)

¼ 0:414

11 a T = number of wrong numbers dialled in a typical week

) T » B(75, 0:005)

b i P(T = 0) ¼ 0:687

ii P(T > 2) = 1¡ P(T 6 2)

¼ 0:006 46

c E(T ) = np = 0:375

Var(T ) = np(1¡ p) = 0:373

The mean and variance are almost the same which suggests

that T can be approximated using a Poisson distribution.

d Using T » Po(0:375)

i P(T = 0) ¼ 0:687

ii P(T > 2) = 1¡ P(T 6 2)

¼ 0:006 65
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168 WORKED SOLUTIONS

e Both results are very close verifying that for large n and

small p, the binomial distribution can be approximated by

the Poisson distribution with the same mean
i.e., X » Po(np).

12 a i As 0 < q < 1,

1 + q + q2 + q3 + :::: has sum to infinity
1

1¡ q
fsum of an infinite geometric seriesg

ii Thus 1 + q + q2 + q3 + q4 + :::: = (1¡ q)¡1

Differentiating both sides with respect to q gives:

1 + 2q + 3q2 + 4q3 + :::: = ¡(1¡ q)¡2 £ (¡1)

=
1

(1¡ q)2

)
1P

x=1

xqx¡1 =
1

(1¡ q)2
for 0 < q < 1

b X » Geo(p)

) P(X = x) = p(1¡ p)x¡1

= pqx¡1 where q = 1¡ p

Now E(X) =
1P

x=1

xP(X = x)

=
1P

x=1

xpqx¡1

= p
1P

x=1

xqx¡1

= p£ 1

(1¡ q)2
ffrom a iig

= p£ 1

p2

=
1

p

EXERCISE C

1 T » U(¡¼, ¼)

¹ =
a+ b

2

=
¡¼ + ¼

2
= 0

¾ =

r
(a¡ b)2

12

=

r
(2¼)2

12

=

r
¼2

3

=
¼p
3

2 a The best chance of getting a ticket is as soon as possible after

release. As time goes by it gets increasingly difficult and

very quickly almost impossible.

The distribution has the shape shown, and the variable X is

continuous.

b As the median is 10,Z 10

0

f(x) dx = 0:5

)

Z 10

0

¸e¡¸x dx = 0:5

) ¸

h
1

¡¸
e¡¸x

i10
0

= 0:5

) (¡e¡10¸)¡ (¡e0) = 0:5

) e¡10¸ = 0:5

) ¡10¸ = ln 1
2
= ¡ ln 2

) ¸ =
ln 2

10
¼ 0:0693

c P(seat purchased after 3 days)

= P(X > 72)

= 1¡ P(X < 72)

= 1¡
Z 72

0

0:069 315e¡0:069 315x dx

= 0:006 80

d E(X) =
1

¸
¼ 14:4 hours

The average time to buy a ticket is ¼ 14:4 hours.

3 X » N(¹, ¾2)

If P(X > 13) = 0:4529 then

P

³
X ¡ ¹

¾
<

13¡ ¹

¾

´
= 0:5471

) P

³
Z <

13¡ ¹

¾

´
= 0:5471

)
13¡ ¹

¾
= invNorm (0:5471)

) 13¡ ¹ ¼ 0:118 34 .... (1)

If P(X > 28) = 0:1573 then

P

³
Z <

28¡ ¹

¾

´
= 0:8427

)
28¡ ¹

¾
¼ 1:005 62

) 28¡ ¹ ¼ 1:005 62¾ .... (2)

Solving (1) and (2) simultaneously gives ¹ ¼ 11:0 and

¾ ¼ 16:9

4 a We require

Z k

0

(6¡ 18x) dx = 1

)
£
6x¡ 9x2

¤ k
0
= 1

) 6k ¡ 9k2 = 1

) 9k2 ¡ 6k + 1 = 0

) (2k ¡ 1)2 = 0

) k = 1
3

b ¹ = E(X) =

Z 1

3

0

x f(x) dx

=

Z 1

3

0

(6x¡ 18x2) dx

= 1
9

P

time (x)
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WORKED SOLUTIONS 169

¾2 = E(X2)¡ [E(X)]2

=

Z 1

3

0

x2 f(x) dx¡ ( 1
9
)2

=

Z 1

3

0

(6x2 ¡ 18x3) dx¡ 1
81

¼ 0:006 172 8

) ¾ ¼ 0:0786

5 a X = number who support the Environment Party

X » B(180, 0:41)

b E(X) = np

= 180£ 0:41

= 73:8

Var(X) = np(1¡ p)

= 180£ 0:41£ 0:59

¼ 43:5

c P(X > 58) = 1¡ P(X 6 57)

¼ 0:994

d As np = 73:8 > 5 and n(1¡ p) = 106:2 > 5 we can

approximate this binomial distribution to the normal

distribution and X » N(73:8, 43:5)

P(X > 58) = P(X¤ > 57:5)

¼ 0:993

6 a X = number of mistakes made on one page

X » Po(2:5) is the discrete random variable.

Consider Y = X1 +X2 +X3 +X4 + ::::+X52 where

Xi are assumed to be independent.

E(Y ) = E(X1) + E(X2) + ::::+ E(X52)

= 52£ 2:5

= 130

and Var(Y ) = Var(X1) + Var(X2) + ::::+ Var(X52)

= 52£ 2:5 fassumptiong
= 130 also.

So, Y » Po(130)

b i P(X > 2)

= 1¡ P(X 6 2)

¼ 0:456

ii P(Y > 104)

= 1¡ P(Y 6 104)

¼ 0:989

c X » N(2:5, 2:5)

) P(X > 2) = P(X¤ > 2:5)

¼ 0:500

Y » N(130, 130)

) P(Y > 104) = P(Y ¤ > 104:5)

¼ 0:987

The approximation for X is poor, but that for Y is very good.

This is probably due to the fact that 2:5 = ¸ is not large

enough.

7 X is a uniform continuous random variable.

a

Z k

1

f(x) dx = 1

)
£
2
5
x
¤ k
1
= 1

)
2k

5
¡ 2

5
= 1

) 2k ¡ 2 = 5

) k = 3:5

Thus X » U(1, 3:5).

b P(1:7 6 X 6 3:2) =

Z 3:2

1:7

2
5
dx

=
£
2
5
x
¤ 3:2
1:7

= 0:6

c E(X) =
a+ b

2

=
1 + 3:5

2
= 2:25

Var(X) =
(b¡ a)2

12

=
(3:5¡ 1)2

12
¼ 0:521

10 a f(x) =
e
¡ 1

2
x

2
= 0:5e¡0:5x which is the PDF of an

exponential random variable with ¸ = 0:5
i.e., X » Exp(0:5)

b i ¹X

= E(X)

=
1

¸
= 2

ii Var(X)

=
1

¸2

= 4

) ¾X = 2

8 a Suppose the PDF of X is f(x) = k.

Now 9k = 0:6, so k = 0:6
9

= 1
15

Also (3¡ a)k = 0:3, so
3¡ a

15
= 0:3

) 3¡ a = 4:5

) a = ¡1:5

and (3¡ a)k = 0:3, so
3¡ a

15
= 0:3

) b = 13:5

b f(x) = 1
15

, ¡1:5 6 x 6 13:5

c P(5 < X < 9) = 4
15

d CDF, F (X) =
x¡ a

b¡ a
=

x+ 1:5

15

) F (X) =

(
2x+ 3

30
, ¡1:5 < x < 13:5

0 elsewhere

9 a T » N(7, 36) ) ¾ = 6

P(jT ¡ 6j < 2:3) = P(¡2:3 < T ¡ 6 < 2:3)

= P(3:7 < T < 8:3)

¼ 0:295

b X » B(4, 0:294 61) where X is the number of times T lies

in the interval 3:7 < T < 8:3 and P(X = 2) ¼ 0:259

y = k

x

0 3. 0 6.

a 3 12 b

0 1.

30th 90th

9
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170 WORKED SOLUTIONS

iii If the median is m, sayZ m

0

f(x) dx = 0:5

) 0:5

Z m

0

e¡0:5x dx = 0:5

)

Z m

0

e¡0:5x dx = 1

)
£

1
¡0:5

e¡0:5x
¤m
0

= 1

) ¡2e
¡m

2 + 2e0 = 1

) e
¡m

2 = 1
2

) ¡m

2
= ln 1

2
= ¡ ln 2

) m = 2 ln 2 = ln 4

iv We need to find a, say such thatZ a

0

0:5e¡0:5x dx = 0:9

)

Z a

0

e¡0:5x dx = 1:8

)
£

1
¡0:5

e¡0:5x
¤ a
0
= 1:8

) e¡0:5a ¡ 1 = ¡0:9

) e¡0:5a = 0:1

) e0:5a = 10

) 0:5a = ln 10

) a = 2 ln 10 = ln 100

c When X » Exp(¸), the CDF of X is

F (x) = P(X 6 x) = 1¡ e¡¸x

) P(X 6 x) = 1¡ e
¡x

2

i P(X 6 1)

= 1¡ e¡0:5

¼ 0:3935

ii P(0:4 6 X 6 2)

= P(X 6 2)¡ P(X 6 0:4)

= (1¡ e¡1)¡ (1¡ e¡0:2)

= e¡0:2 ¡ e¡1

¼ 0:4509

11 a f(x) = ae¡ax for a = 1, 2, 3

b

Z 1

0

ae¡ax dx = lim
t!1

Z t

0

ae¡ax dx

= lim
t!1

h
a

³
1

¡a

´
e¡ax

it
0

= lim
t!1

(¡e¡at + 1)

= 1

) f(x) is a well defined PDF.

c i With u0 = e¡ax v = ax

u =
1

¡a
e¡ax v0 = a

)

Z
axe¡ax = uv ¡

Z
uv0

= ¡xe¡ax ¡
Z

¡e¡ax dx

= ¡xe¡ax +
1

¡a
e¡ax + constant

= ¡e¡ax

³
x+

1

a

´
+ constant

ii With u0 = e¡ax v = ax2

u =
1

¡a
e¡ax v0 = 2ax

)

Z
ax2e¡ax

= ¡x2e¡ax ¡
Z

¡2xe¡ax

= ¡x2e¡ax + 2

³
1

a

´
£¡e¡ax

³
x+

1

a

´
+ constant

= e¡ax

³
¡x2 ¡ 2x

a
¡ 2

a2

´
+ constant

d ¹ = E(X) =

Z 1

0

xae¡ax dx

=

h
¡e¡ax

³
x+

1

a

´i1
0

= 0¡
³
¡1

a

´
=

1

a

E(X2) =

Z 1

0

x2ae¡ax dx

=

h
e¡ax

³
¡x2 ¡ 2x

a
¡ 2

a2

´i1
0

= 0¡
³
¡ 2

a2

´
=

2

a2

and Var(X) = E(X2)¡ [E(X)]2

=
2

a2
¡
³
1

a

´2

=
1

a2

EXERCISE D.1

1 a X has probability

distribution:

x 1 2 3

P(X = x) 1
3

1
3

1
3

) X » DU( 1
3
)

and G(t) = p1t+ p2t
2 + p3t

3

= 1
3
(t+ t2 + t3)

=
t

3
(1 + t+ t2) or

t(t3 ¡ 1)

3(t¡ 1)
for t 2 R

y

x

1

2

3

y = 2 -2xe

y = 3 -3xe

y = -xe
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WORKED SOLUTIONS 171

b X has probability

distribution:

x 1 2 5

P(X = x) 1
3

1
3

1
3

) G(t) = 1
3
t+ 1

3
t2 + 1

3
t5

=
t

3
(1 + t+ t4), t 2 R

c G(t) = 2
11

t+ 3
11

t2 + 5
11

t7 + 1
11

t12

=
t

11
(2 + 3t+ 5t6 + t11), t 2 R

2 a X has probability

distribution:

x 1 2 3

P(X = x) 1
5

2
5

2
5

b G(t) = 1
5
t+ 2

5
t2 + 2

5
t3

=
t

5
(1 + 2t+ 2t2)

3 a X » B(3, 2
5
)

X has probability

distribution:

x 0 1 2 3

P(X = x) 27
125

54
125

36
125

8
125

b G(t) = 27
125

+ 54
125

t+ 36
125

t2 + 8
125

t3

= 1
125

(8t3 + 36t2 + 54t+ 27)

= 1
125

(2t+ 3)3

4 a X » B(1, p) has

probability distribution:

x 0 1

P(X = x) 1¡ p p

) G(t) = p0 + p1t

= (1¡ p) + pt

= 1¡ p+ pt

b For X » B(1, 0:4), G(t) = 0:6 + 0:4t

=
3 + 2t

5

5 a X has probability

distribution:

x 0 1

P(X = x) 1
2

1
2

) G(t) = 1
2
t0 + 1

2
t1

= 1
2
(1 + t)

b Y has probability

distribution:

y 0 1 2

P(Y = y) 1
4

1
2

1
4

) H(t) = 1
4
t0 + 1

2
t1 + 1

4
t2

= 1
4
(1 + 2t+ t2)

c H(t) = 1
4
(1 + t)2 = [G(t)]2

6 a X » B(4, 1
6
) and X has probability distribution

( 5
6
+ 1

6
)4

= ( 5
6
)4 + 4( 5

6
)3( 1

6
) + 6( 5

6
)2( 1

6
)2 + 4( 5

6
)( 1

6
)3 + ( 1

6
)4

which is

x 0 1 2 3 4

P(X = x) 625
1296

500
1296

150
1296

20
1296

1
1296

) H(t) = 625
1296

t0 + 500
1296

t1 + 150
1296

t2 + 20
1296

t3 + 1
1296

t4

) H(t) = 1
1296

[625 + 500t+ 150t2 + 20t3 + t4]

b [G(t)]4 = ( 5
6
+ 1

6
t)4

= 1
64

(5 + t)4

= 1
1296

(54 + 4(5)3t+ 6(5)2t2 + 4(5)t3 + t4)

= 1
1296

(625 + 500t+ 150t2 + 20t3 + t4)

= H(t)

7 a X has probability distribution

x 1 2 3 4 5 6

P(X = x) 1
6

1
6

1
6

1
6

1
6

1
6

) G(t) = 1
6
t+ 1

6
t2 + 1

6
t3 + 1

6
t4 + 1

6
t5 + 1

6
t6

=
t

6
(1 + t+ t2 + t3 + t4 + t5)

b Similarly for Y ,

H(t) =
t

4
(1 + t+ t2 + t3)

c i

Die 2

4 5 6 7 8 9 10

3 4 5 6 7 8 9

2 3 4 5 6 7 8

1 2 3 4 5 6 7

1 2 3 4 5 6

Die 1

U = X + Y has probability distribution:

U 2 3 4 5 6 7 8 9 10

P(U = u) 1
24

2
24

3
24

4
24

4
24

4
24

3
24

2
24

1
24

ii K(t) = 1
24

t2 + 2
24

t3 + 3
24

t4 + 4
24

t5 + 4
24

t6 + 4
24

t7

+ 3
24

t8 + 2
24

t9 + 1
24

t10

=
t2

24
[1 + 2t+ 3t2 + 4t3 + 4t4 + 4t5 + 3t6

+ 2t7 + t8]

d G(t)H(t)

=
t

6
(1 + t+ t2 + t3)£ t

4
(1 + t+ t2 + t3 + t4 + t5)

=
t2

24
(1 + t+ t2 + t3)(1 + t+ t2 + t3 + t4 + t5)

=
t2

24
[1 + 2t+ 3t2 + 4t3 + 4t4 + 4t5 + 3t6 + 2t7 + t8]

fusing synthetic multiplicationg
= K(t)

8 a X is the number of independent trials needed to get a

successful outcome. Each trial has probability 1
4

of being

successful

) X » Geo( 1
4
)

b i P(X = 1) = p = p1 = 1
4

ii P(X = 2) = p(1¡ p) = 1
4
£ 3

4

iii P(X = k) = 1
4
( 3
4
)k¡1
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172 WORKED SOLUTIONS

c G(t) =
P
k=1

pit
i

= 1
4
t+ 1

4
( 3
4
)t2 + ( 1

4
)( 3

4
)2t3 + ::::

= 1
4
t
¡
1 + ( 3

4
t) + ( 3

4
t)2 + ::::

¢
= 1

4
t

µ
1

1¡ 3
4 t

¶
for

¯̄
3
4
t
¯̄
< 1

=
t

4¡ 3t
for jtj < 4

3

and the domain is t 2 ]¡ 4
3

, 4
3
[

EXERCISE D.2

1 X » B(1, p) has

probability distribution:

x 0 1

P(X = x) 1¡ p p

) G(t) = (1¡ p)t0 + pt1

= 1¡ p+ pt

2 X » Po(m) has P(X = k) =
mke¡m

k!

) G(t) =
1P
k=0

P(X = k)tk

=
1P
k=0

mke¡m

k!
tk

=
1P
k=0

(mt)ke¡m

k!

= e¡m
1P

k=0

(mt)k

k!

= e¡m £ emt

= emt¡m

= em(t¡1), t 2 R

3 X » B(n, p) has P(X = x) =
¡
n
x

¢
px(1¡ p)n¡x

) G(t) =
nP

x=0

P(X = x)tx

=
nP

x=0

¡
n
x

¢
px(1¡ p)n¡xtx

=
nP

x=0

¡
n
x

¢
(pt)x(1¡ p)n¡x

= (pt+ (1¡ p))n

= (1¡ p+ pt)n, n 2 Z +

4 a X » Po(6) has G(t) = e6(t¡1), t 2 R

b X » B(10, 0:35) has G(t) = (1¡ 0:35 + 0:35t)n

= (0:65 + 0:35t)n, n 2 Z+

c X » Geo(0:7) has G(t) =
0:7t

1¡ 0:3t
, jtj < 1

0:3

=
7t

10¡ 3t
, jtj < 10

3

d X » NB(6, 0:2) has G(t) =

³
0:2t

1¡ 0:8t

´6

, jtj < 1
0:8

=

³
t

5¡ 4t

´6

, jtj < 5
4

5 a If X » B(n, p), ¹ = np

and G(t) = (1¡ p+ pt)n

= (1 + p(t¡ 1))n

=

µ
1 +

¹(t¡ 1)

n

¶n

b As n gets large G(t) ! e¹(t¡1)

f lim
n!1

³
1 +

a

n

´
= ea, a 2 R g

Since e¹(t¡1) is the Poisson PGF with m = ¹, for

large n the Poisson probability distribution can be used to

approximate the binomial probability distribution.

EXERCISE D.3

1 G(t) = 1
2
+ 1

2
t

) G0(t) = 1
2

and G00(t) = 0

E(X) = G0(1) = 1
2

and

Var(X) = G00(1) +G0(1)¡ [G0(1)]2

= 0 + 1
2
¡ ( 1

2
)2

= 1
4

2 a X has probability

distribution:

x 1 2 3

P(X = x) 1
6

2
6

3
6

) G(t) = 1
6
t+ 2

6
t2 + 3

6
t3, t 2 R

b G0(t) = 1
6
+ 2

3
t+ 3

2
t2 and

G00(t) = 2
3
+ 3t

Thus E(X) = G0(1) = 1
6
+ 2

3
+ 3

2

) E(X) = 2 1
3

and Var(X) = G00(1) +G0(1)¡ [G0(1)]2

= 3 2
3
+ 2 1

3
¡ (2 1

3
)2

= 11 4
9

3 a X » Po(12), ) G(t) = e12(t¡1)

b G0(t) = 12e12(t¡1) and G00(t) = 144e12(t¡1)

) G0(1) = 12 and G00(1) = 144

) E(X) = 12 and Var(X) = 144 + 12¡ 122

= 12

4 X » B(n, p)

) G(t) = (1¡ p+ pt)n

) G0(t) = n(1¡ p+ pt)n¡1 £ p

) E(X) = G0(1)
= n(1)n¡1p

= np

and G00(t) = np(n¡ 1)(1¡ p+ pt)n¡2 £ p

) G00(1) = n(n¡ 1)p2 £ (1)

= n(n¡ 1)p2

Now Var(X)

= G00(1) +G0(1)¡ [G0(1)]2

= n(n¡ 1)p2 + np¡ n2p2

= np[np¡ p+ 1¡ np]

= np(1¡ p)
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WORKED SOLUTIONS 173

5 X » Geo(p)

) G(t) =
pt

1¡ t(1¡ p)

G0(t) =
p[1¡ t(1¡ p)]¡ pt[p¡ 1]

[1¡ t(1¡ p)]2

=
p¡ pt+ p2t¡ p2t+ pt

[1¡ t(1¡ p)]2

=
p

[1¡ t(1¡ p)]2

Since G0(t) = p[1¡ t(1¡ p)]¡2

G00(t) = ¡2p[1¡ t(1¡ p)]¡3(p¡ 1)

=
¡2p(p¡ 1)

[1¡ t(1¡ p)]3

Thus G0(1) =
p

p2
=

1

p
and G00(1) =

¡2p(p¡ 1)

p3

) E(X) =
1

p

and Var(X) = G00(1) +G0(1)¡ [G0(1)]2

=
¡2p(p¡ 1)

p3
+

1

p
¡ 1

p2

= ¡2

p
+

2

p2
+

1

p
¡ 1

p2

=
1

p2
¡ 1

p

=
1¡ p

p2

6 X » Po(m)

) G(t) = em(t¡1)

Now G0(t) = mem(t¡1)

and G00(t) = m2em(t¡1)

) E(X) = G0(1) = me0 = m

and Var(X) = G00(1) +G0(1)¡ [G0(1)]2

= m2 +m¡m2

= m

7 X » NB(r, p)

) G(t) =

µ
pt

1¡ t(1¡ p)

¶r

) G0(t)

= r

µ
pt

1¡ t(1¡ p)

¶r¡1 ·
p[1¡ t(1¡ p)]¡ pt(p¡ 1)

[1¡ t(1¡ p)]2

¸
= r

µ
pt

1¡ t(1¡ p)

¶r¡1 ·
p¡ pt+ p2t¡ p2t+ pt

[1¡ t(1¡ p)]2

¸
= r

µ
pt

1¡ t(1¡ p)

¶r¡1

£ p

[1¡ t(1¡ p)]2

) G0(1) = r

µ
p

p

¶r¡1

£ p

p2

) E(X) =
r

p

G00(t) = r(r ¡ 1)

µ
pt

1¡ t(1¡ p)

¶r¡2

£ p2

[1¡ t(1¡ p)]4

+r

µ
pt

1¡ t(1¡ p)

¶r¡1

£¡2p[1¡ t(1¡ p)]¡3(p¡ 1)

) G00(1) =
r(r ¡ 1)p2

p4
¡ 2p(p¡ 1)r

p3

=
r(r ¡ 1)

p2
¡ 2r(p¡ 1)

p2

=
r2 + r ¡ 2pr

p2

) Var(X) = G00(1) +G0(1)¡ [G(1)]2

=
r2 + r ¡ 2pr

p2
+

r

p
¡ r2

p2

=
r2 + r ¡ 2pr + rp¡ r2

p2

=
r(1¡ p)

p2

Condition: jtj < 1

1¡ p

EXERCISE D.4

1 a X has probability

distribution:

x 1 2

P(X = x) 1
2

1
2

) G(t) = 1
2
t1 + 1

2
t2

) G(t) = 1
2
t(1 + t)

b Y has probability

distribution:

y 1 2 3 4

P(Y = y) 1
4

1
4

1
4

1
4

) H(t) = 1
4
t+ 1

4
t2 + 1

4
t3 + 1

4
t4

=
t

4
(1 + t+ t2 + t3)

c i U has PGF G(t)H(t)

=
t2

8
(1 + t)(1 + t+ t2 + t3)

=
t2

8
(1 + 2t+ 2t2 + 2t3 + t4)

=
t2

8
+

t3

4
+

t4

4
+

t5

4
+

t6

8

ii P(U = 4) = the coefficient of t4

= 1
4

2 a Let R = result of rolling the tetrahedral die

r 1 2 3 4

P(R = r) 1
4

1
4

1
4

1
4

) G(t) = 1
4
t+ 1

4
t2 + 1

4
t3 + 1

4
t4

=
t

4
(1 + t+ t2 + t3)

and if S = result of rolling the 6-sided die

H(t) =
t

6
(1 + t+ t2 + t3 + t4 + t5)
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174 WORKED SOLUTIONS

Thus if X = R+ S, the PGF for X is

t

4
(1 + t+ t2 + t3)£ t

6
(1 + t+ t2 + t3 + t4 + t5)

=
t2

24
(1 + 2t+ 3t2 + 4t3 + 4t4 + 4t5 + 3t6 + 2t7 + t8)

b P(X = 5) = coefficient of t5

= 1
24

£ 4

= 1
6

3 X » Po(m) and Y » Po(¸)

a Consider U = X + Y
U has PGF GX(t)GY (t)

= em(t¡1)e¸(t¡1)

= em(t¡1)+¸(t¡1)

= e[m+¸](t¡1)

b This is the PGF for a Poisson probability function with

parameter m+ ¸

So, X + Y » Po(m+ ¸).

4 X » B(n, p), Y = B(m, p)

a U = X + Y has PGF

GX(t)GY (t)

= (1¡ p+ pt)n(1¡ p+ pt)m

= (1¡ p+ pt)n+m

b This is the PGF for a Binomial probability function with

parameters p and n+m

So, X + Y » B(n+m, p).

5 X » Geo(p), Y » Geo(p)

a U = X + Y has PGF

GX(t)GY (t) =
pt

1¡ t(1¡ p)
£ pt

1¡ t(1¡ p)

=
p2t2

[1¡ t(1¡ p)]2

=

µ
pt

1¡ t(1¡ p)

¶2

b This is the PGF for a Negative binomial probability function

with parameters r = 2 and p

So, X + Y » NB(2, p).

6 X » NB(r, p) and Y » NB(s, p)

a U = X + Y has PGF

GX(t)GY (t) =

µ
pt

1¡ t(1¡ p)

¶rµ
pt

1¡ t(1¡ p)

¶s

=

µ
pt

1¡ t(1¡ p)

¶r+s

b This is the PGF for a Negative binomial probability

distribution with parameters r + s and p

So, X + Y » NB(r + s, p).

7 a P(a 4) = 1
7

b Y » Geo( 1
7
)

i PGF of Y is G(t) =

1
7 t

1¡ t(67 )
for jtj < 1

6
7

) G(t) =
t

7¡ 6t
for jtj < 7

6

ii G0(t) =
1(7¡ 6t)¡ t(¡6)

(7¡ 6t)2

=
7

(7¡ 6t)2

) E(Y ) = G0(1) =
7

12
= 7

Since G0(t) = 7(7¡ 6t)¡2

G00(t) = ¡14(7¡ 6t)¡3(¡6)

=
84

(7¡ 6t)3

Var(Y ) = G00(1) +G0(1)¡ [G0(1)]2

= 84 + 7¡ 72

= 42

c X = NB(3, 1
7
)

i Y1 = number of spins needed to get the first ‘4’

Y2 = number of spins needed to get the second ‘4’

Y3 = number of spins needed to get the third ‘4’

) each Yi are geometric with parameter 1
7

.

ii E(X) = E(Y1) + E(Y2) + E(Y3)

= 7 + 7 + 7

= 21

Var(X) = Var(Y1) + Var(Y2) + Var(Y3)

= 42 + 42 + 42

= 126

iii If Y1, Y2, and Y3 are discrete random variables with

values in Z+ and PGFs GY1
(t), GY2

(t), and GY3
(t)

then Y1 + Y2 + Y3 has PGF GY1
(t)GY2

(t)GY3
(t)

with mean E(Y1) + E(Y2) + E(Y3) and

Var(Y1) + Var(Y2) + Var(Y3).

8 a i G(t) = 1¡ p+ pt

) G0(t) = p

and G0(1) = p

) E(Y ) = p

ii Since G0(t) = p, G00(t) = 0

) Var(Y ) = G00(1) +G0(1)¡ [G0(1)]2

= 0 + p¡ p2

= p(1¡ p)

b i X » B(5, 1
6
) (p = 1

6
)

If X = Y1 + Y2 + Y3 + Y4 + Y5 where each

Yi » B(1, 1
5
) then

H(t) = G(Y1)G(Y2)G(Y3)G(Y4)G(Y5)

= [G(Y )]5

= (1¡ p+ pt)5

) H(t) = ( 5
6
+ 1

6
t)5

ii H0(t) = 5( 5
6
+ 1

6
t)4 £ 1

6

H00(t) = 5
6
£ 4( 5

6
+ 1

6
t)3 £ 1

6

) E(X) = H0(1) = 5
6

and Var(X) = H00(1) +H0(1)¡ [H0(1)]2

= 20
36

+ 5
6
¡ 25

36

= 25
36
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WORKED SOLUTIONS 175

iii X = Y1 + Y2 + Y3 + Y4 + Y5 where Yi » B(1, 1
6
)

) E(X) = E(Y1) + E(Y2) + ::::+ E(Y5)

= 5p

= 5£ 1
6

= 5
6

and Var(Y ) =
5P

i=1

Var(Yi)

=
5P

i=1

( 1
6
£ 5

6
)

= 5£ 5
36

= 25
36

9 Yi » Geo(p) for i = 1, 2, 3, ...., r

X = Y1 + Y2 + Y3 + :::: + Yr is the sum of r independent

random variables

) G(X) = G(Y1)G(Y2)G(Y3)::::G(Yr)

=

µ
pt

1¡ t(1¡ p)

¶r

, jtj < 1

1¡ p

which is the Negative binomial PGF as expected.

10 X and Y are independent discrete random variables.

X has PGF GX(t) and Y has PGF GY (t).

) X + Y has PGF GX(t)GY (t) = G(t).

a G0(t) = G 0
X(t)GY (t) +GX(t)G 0

Y (t)

) G0(1) = G 0
X(1)GY (1) +GX(1)G 0

Y (1)

= E(X)£ 1 + 1£ E(Y )

= E(X) + E(Y )

Thus E(X + Y ) = E(X) + E(Y )

b Also G00(t) = G 00
X(t)GY (t) +G 0

X(t)G 0
Y (t)

+G 0
X(t)G 0

Y (t) +GX(t)G 00
Y (t)

) G00(1) = G 00
X(1)GY (1) + 2G 0

X(1)G 0
Y (1)

+GX(1)G 00
Y (1)

= G 00
X(1) + 2G 0

X(1)G 0
Y (1) +G 00

Y (1)

Now Var(X + Y )

= G00(1) +G0(1)¡ [G0(1)]2

= G 00
X(1) + 2G 0

X(1)G 0
Y (1) +G 00

Y (1)

+G 0
X(1) +G 0

Y (1)¡ [G 0
X(1) +G 0

Y (1)]2

= G 00
X(1) + 2G 0

X(1)G 0
Y (1) +G 00

Y (1) +G 0
X(1)

+G 0
Y (1)¡ [G 0

X(1)]2 ¡ 2G 0
X(1)G 0

Y (1)

¡ [G 0
Y (1)]2

= G 00
X(1) +G 0

X(1)¡ [G 0
X(1)]2 +G 00

Y (1) +G 0
Y (1)

¡ [G 0
Y (1)]2

= Var(X) + Var(Y )

11 a X has PGF G(t) = p0 + p1t+ p2t
2 + p3t

3 + ::::

for X values of 0, 1, 2, 3, 4, ....

i X + 2 takes values 2, 3, 4, 5, 6, ....

H(t) = p0t
2 + p1t

3 + p2t
4 + p3t

5 + ::::

= t2(p0 + p1t+ p2t
2 + p3t

3 + ::::)

= t2G(t)

ii 3X takes values 0, 3, 6, 9, 12, ....

H(t) = p0 + p1t
3 + p2t

6 + p3t
9 + ::::

= G(t3)

b i aX + b takes values b, a+ b, 2a+ b, 3a+ b, ....

) H(t) = p0t
b + p1t

a+b + p2t
2a+b + ::::

= tb[p0 + p1t
a + p2t

2a + ::::]

= tbG(ta)

ii H(t) = tbG(ta)

) H0(t) = btb¡1G(ta) + tbG0(ta)ata¡1

= btb¡1G(ta) + ata+b¡1G0(ta)
Now E(aX + b) = H0(1) = bG(1) + aG0(1)

) E(aX + b) = b£ 1 + aE(X)

= aE(X) + b

Also,

H00(t) = b(b¡ 1)tb¡2G(ta) + btb¡1G0(ta)ata¡1

+ a(a+ b¡ 1)ta+b¡2G0(ta)
+ ata+b¡1G00(ta)ata¡1

) H00(1) = b(b¡ 1)G(1) + abG0(1)
+ a(a+ b¡ 1)G0(1) + a2G00(1)

= a2G00(1) + (a2 + 2ab¡ a)G0(1) + (b2 ¡ b)

Now Var(aX + b)

= H00(1) +H0(1)¡ [H0(1)]2

= a2G00(1) + (a2 + 2ab¡ a)G0(1) + b2 ¡ b

+ b+ aG0(1)¡ [b2 + 2abG0(1) + [G0(1)]2]
= a2G00(1) + (a2 + 2ab¡ a+ a¡ 2ab)G0(1)

+ b2 ¡ b+ b¡ b2 ¡ a2[G0(1)]2

= a2(G00(1) +G0(1)¡ [G0(1)]2)
= a2Var(X)

EXERCISE E.1

1 a i Poss. sample x Poss. sample x

1, 1 1 3, 1 2

1, 2 1:5 3, 2 2:5

1, 3 2 3, 3 3

1, 4 2:5 3, 4 3:5

2, 1 1:5 4, 1 2:5

2, 2 2 4, 2 3

2, 3 2:5 4, 3 3:5

2, 4 3 4, 4 4

ii x 1 1:5 2 2:5 3 3:5 4

Freq. 1 2 3 4 3 2 1

P (x) 1
16

2
16

3
16

4
16

3
16

2
16

1
16

iii

b ii x 1 4
3

5
3

2 7
3

Freq. 1 3 6 10 12

P (x) 1
64

3
64

6
64

10
64

12
64

x 8
3

3 10
3

11
3

4

Freq. 12 10 6 3 1

P (x) 12
64

10
64

6
64

3
64

1
64

1 1 5. 2 2 5. 3 3 5. 4

Sq_y

Fq_y

x

P(x)
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176 WORKED SOLUTIONS

iii

2 a Poss. sample x Poss. sample x

2, 2, 2, 2 2 3, 3, 2, 2 10
4

2, 2, 2, 3 9
4

3, 2, 3, 2 10
4

2, 2, 3, 2 9
4

3, 2, 2, 3 10
4

2, 3, 2, 2 9
4

2, 3, 3, 3 11
4

3, 2, 2, 2 9
4

3, 2, 3, 3 11
4

2, 2, 3, 3 10
4

3, 3, 2, 3 11
4

2, 3, 2, 3 10
4

3, 3, 3, 2 11
4

2, 3, 3, 2 10
4

3, 3, 3, 3 3

b x 2 9
4

10
4

11
4

3

Freq. 1 4 6 4 1

P (x) 1
16

4
16

6
16

4
16

1
16

3 x 1 1:5 2 2:5 3 3:5

Freq. 1 2 3 4 5 6

P (x) 1
36

2
36

3
36

4
36

5
36

6
36

x 4 4:5 5 5:5 6

Freq. 5 4 3 2 1

P (x) 5
36

4
36

3
36

2
36

1
36

EXERCISE E.2

1 a ¹
X

= ¹ = 64 b ¾
X

=
¾p
n

=
10p
36

¼ 1:67

2 a ¾
X

=
24p
n

b i 12 ii 6 iii 3

c If ¾
X

= 4, then
24p
n

= 4

)
p
n = 6

) n = 36

d

e As n gets larger, ¾
X

gets smaller and approaches 0. Hence,

for large n, n ! population size, and the sampling error of

the mean is effectively zero, i.e., when the sample is the

population x = ¹ without error.

3 X » Po(6) ) ¹ = 6 and ¾2 = 6

By the CLT, X » N

µ
¹,

¾2

n

¶
approximately

) X » N

³
6,

6

n

´
We require n such that P(X < 5) = 0:09

) P

0@X ¡ 6q
6
n

<
5¡ 6q

6
n

1A < 0:09

) P

0@Z <
¡1q

6
n

1A < 0:09

) ¡
r

n

6
= ¡1:3408

)
n

6
= 1:798

) n ¼ 10:8

) n ¼ 11

4 ¹ = 100 and ¾ = 15

a By the CLT, we expect ¹
X

= 100

b By the CLT, we expect ¾
X

=
15p
36

= 2:5

c As n is sufficiently large we expect the distribution to be

normal.

5 a ¹ =
P

pixi

= 0£ 1
2
+ 1£ 1

2

= 1
2

¾2 =
P

pix
2
i ¡ ¹2

= 1
2
£ 0 + 1

2
£ 1¡ 1

4

= 1
4

) ¾ = 1
2

b i TTTT TTTH

TTHT

THTT

HTTT

TTHH

THTH

THHT

HHTT

HTHT

HTTH

HHHT

HHTH

HTHH

THHH

HHHH

Xi 0 1
4

2
4

3
4

1

pi
1
16

4
16

6
16

4
16

1
16

ii ¹
X

= 1
16

(0) + 4
16

( 1
4
) + 6

16
( 2
4
) + 4

16
( 3
4
) + 1

16
(1)

= 32
64

= 1
2

¾ 2

X
= 1

16
(0)2 + 4

16
( 1
4
)2 + 6

16
( 1
2
)2 + 4

16
( 3
4
)2

+ 1
16

(1)2 ¡ ( 1
2
)2

= 1
16

Hence ¾
X

= 1
4

iii ¹
X

= ¹ = 1
2

X

¾
X

= 1
4

and
¾p
n

=

1
2p
4

= 1
4

X

6 a Let X be the value of a home in this suburb.
¹ = E620 000 with ¾ = E80 000.
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WORKED SOLUTIONS 177

By the CLT, X » N

µ
620 000,

80 0002

25

¶
for large n.

P(X > 643 000) ¼ 0:0753

b The answer may not be all that reliable as X is not normal.

Hence, we treat the answer with great caution. Note that the

result states that about 7:53% of all samples of size 25 will

have an average value of at least E643 000.

7 Let H = heights of plants (in cm)

¹H = 21 and ¾H =
p
90 cm

H » N(21, 90
40

) fCLTg
as ¹

H
= 21, ¾ 2

H
= 9

4
) ¾

H
= 3

2

P(19:5 < H < 24) ¼ 0:819

8 Let M = mass of male students (in kg).

¹M = 70 and ¾M = 5

M » N(70, 52

64
) fCLTg

as ¹
M

= 70 and ¾ 2

M
= 52

64
= ( 5

8
)2

) P(M < 68:75) ¼ 0:0228

9 X » B(20, 0:6)

E(X) = np

= 12

Var(X) = np(1¡ p)

= 4:8

X » N(12, 4:8
100

) fCLTg
¹
X

= 12 and ¾
X

=
p

4:8
100

a P(X > 12:4) ¼ 0:0339

b P(X < 12:2) ¼ 0:819

10 Let X = duration of pregnancy (in days)

X » N(267, 152)

a P(overdue betwen 7 and 14 days)

= P(274 < X < 281)

¼ 0:145

) about 14:5% are overdue.

b We need to find k such that P(X 6 k) = 0:8
k ¼ 279:6
So, the longest 20% of pregnancies last 280 days or more.

c i X » N(267, 152

64
)

ii normal with mean 267 and ¾ = 15
8

days.

iii P(X 6 260) ¼ 0:000 094 5 which is a very small

chance.

d As X is now not normally distributed the answer to a and b

above are not acceptable.

However as n > 30 the answers to c ii and iii are still good

approximations.

11 Let A = units of milk from an Ayrshire cow.

J = units of milk from a Jersey cow.

A » N(49, 5:872) and J » N(44:8, 5:122)

a P(A > 50) ¼ 0:432

b Consider D = J ¡A

E(D) = E(J)¡ E(A)

= 44:8¡ 49

= ¡4:2

Var(D) = Var(J) + Var(A)

= 5:872 + 5:122

¼ 60:67

Now if J and A are independent variables

D » N(¡4:2, 60:27) f¾D =
p
60:27g

) P(D > 0) ¼ 0:295

c J » N(44:8, 5:122

25
) f¾ = 5:12

5
g

) P(J > 46) ¼ 0:121

d J » N(44:8, 5:122

25
), A » N(49, 5:872

15
)

Consider U = A¡ J

E(U) = E(A)¡ E(J)

= 49¡ 44:8

= 4:2

¾ 2
U = Var(A) + Var(J)

= 5:872

15
+ 5:122

25

¼ 3:3457

Assuming A and J are independent

P(U > 4) ¼ 0:544 f¾U =
p
3:3457g

12 Let W = weight of adult males

W » N(73:5, 8:242)

If n = 9, W » N(73:5, 8:242

9
) and P(W 6 650

9
) ¼ 0:321

which is ¼ 32:1%

If n = 8, W » N(73:5, 8:242

8
)

and P(W 6 650
8

) ¼ 0:996 or 99:6%

Thus the maximum recommended number is 8.

Note: We do not have to have n large here as W is already

normally distributed.

13 ¹X = 74 and ¾X = 6

X » N

µ
74,

62

n

¶
P(X < 70:4) = 0:001 35

) P

0@X ¡ 74

62

n

<
70:4¡ 74

62

n

1A = 0:001 35

) P

³
Z <

¡3:6n

62

´
= 0:001 35

) P

³
Z < ¡ n

10

´
= 0:001 35

) ¡ n

10
¼ ¡2:999 98

) n ¼ 30

14 ¾X = 4:55 kg

Since n = 100 which is much > 30

) the CLT applies.

As the error could be positive or negative we need to find

P(
¯̄
X ¡ ¹

¯̄
< 0:8)

= P(¡0:8 < X ¡ ¹ < 0:8)

= P

0@ ¡0:8

¾p
100

<
X ¡ ¹

¾p
100

<
0:8

¾p
100

1A
= P(¡ 8

4:55
< Z < 8

4:55
)

¼ 0:921

15 ¹ = 100 ¾X = 15X ,

X » N(100, 152

60
)

P(X > 105) ¼ 0:004 91

Z
¡ n

10

Area .= 0 00135

f¾ 2

X
=

¾ 2
X

n
g
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178 WORKED SOLUTIONS

16 X = weight of a bar of chocolate

X » N(18:2, 3:32)

a ¹
X

= 18:2, ¾
X

=
¾p
n

=
3:3p
25

b i Claim is: each bar averages 17 g

ii Since X »N(18:2, 3:32

25
),

P(X < 17) ¼ 0:0345

) 3:45% fail to meet the claim.

c i ¹
X

= 18:2 and ¾
X

= 3:3p
26

ii Since X »N(18:2, 3:32

26
),

P(X < 425
26

) ¼ 0:002 09

) about 0:209% fail to meet the claim now.

17 a i S has ¹
S
= 315 and ¾

S
= 2p

15

By the CLT S » N(315, 4
15

)

ii E has ¹
E

= 950 and ¾
E

= 5p
10

) E » N(950, 25
10

)

b P(E < 3S)

= P(E ¡ 3S < 0)

Let U = E ¡ 3S

) E(U) = E(E)¡ 3E(S)

= 950¡ 3(315)

= 5

and Var(U) = Var(E) + 9E(S)

= 25
10

+ 9( 4
15

)

= 4:9

U » N(5, 4:9) and P(U < 0) ¼ 0:0119

c Let the contents of the three small cartons be S1, S2, and S3

and consider
V = E ¡ (S1 + S2 + S3)

E(V ) = E(E)¡ E(S1)¡ E(S2)¡ E(S3)

= 950¡ 315¡ 315¡ 315

= 5

Var(V ) = Var(E) + Var(S1) + Var(S2) + Var(S3)

= 25 + 3(4)

= 37

) V » N(5, 37)

P(E < S1 + S2 + S3) = P(E ¡ (S1 + S2 + S3) < 0)

= P(V < 0)

¼ 0:206

18 a i Let X = the number of people cured

then X » B(100, 3
4
).

ii ¹X = np

= 100£ 3
4

= 75

¾X =
p

np(1¡ p)

=
p

100£ 3
4
£ 1

4

¼ 4:3301

iii P(X 6 68) ¼ 0:0693

iv X » N(0:75, 4:33012

100
) fCLTg

) P(X 6 0:68) ¼ 0:0530

b From a iv, the probability of getting 68 cured patients in a

sample of 100 is very low (about 5:3%). This suggests that

either the sample was biased or the company’s claim of a

75% cure rate is not justified.

EXERCISE E.3

c i P(bp < 0:46) ¼ 0:308

ii P(0:45 < p < 0:47) ¼ 0:626

iii P(bp differs by more than 3:5% from p)

= P(bp < 0:43 or bp > 0:50)

= 1¡ P(0:43 6 bp 6 0:50)

d

4 a p = 0:85 and for n sufficiently largebp » N

³
0:85,

0:85£ 0:15

n

´
b For bp to be approximated by the normal distribution we

require that

np > 10 and n(1¡ p) > 10

) 0:85n > 10 and 0:15n > 10

) n > 11:76 and n > 66:67

) n > 67

c i bp » N

³
0:85,

0:85£ 0:15

200

´
) P(bp < 0:75) ¼ 0:000 037 4

ii P(0:75 < bp < 0:87) ¼ 0:786

d i n = 500, bp = 350
500

= 0:7 and p = 0:85

np = 425 and n(1¡ p) = 75 are both > 10

0 465.

m + 3¾ ¼ 0.495 < 0.50

0 000225.0 000225.

1 a Claim is: p = 0:04 and n = 1000
As np = 40 and n(1¡ p) = 960 are both > 10 we can

assume that bp » N

³
0:04,

0:04£ 0:96

1000

´
P(bp > 0:07) ¼ 6:46£ 10¡7

b With such a small probability we would reject the egg

producers claim.

2 p = 2
7

, n = 100

As np ¼ 28:57 and n(1¡ p) ¼ 71:43 are both > 10 we can

assume that bp » N

0@ 2
7

,

2
7
£ 5

7

100

1A
) bp » N( 2

7
, 1
490

)

and P(bp < 29
100

) ¼ 0:538

3 a i p = 0:465 and n = 2500
) ¹bp = p = 0:465

ii ¾bp =

r
p(1¡ p)

n
=

r
0:465£ 0:535

2500

¼ 0:009 98

b bp » B(2500, 0:465) and is approximated by

N(0:465, 0:009 982)

¼ 0:000 451

bp§3:5% lies outside the range ¹§ 3¾, so this probability

is extremely small.
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WORKED SOLUTIONS 179

Now bp » N

³
0:85,

0:85£ 0:15

500

´
) P(bp 6 350

500
) ¼ 0 fusing technologyg

ii Under the given conditions there is virtually no chance

of this happening.

This means that either:

(1) it was a freak occurrence which is possible but

extremely unlikely

(2) the population proportion was no longer 85%

(probably < 85%)

(3) the sample was not taken from the area mentioned.

5 n = 400, bp » N

0@ 2
5

,

2
5
£ 3

5

400

1A
) bp » N(0:4, 0:0006)

a P(bp > 150
400

) ¼ 0:846 b P(bp < 175
400

) ¼ 0:937

6 a n = 250 and their claim is p = 0:9
np = 250£ 0:9 = 225 and n(1¡ p) = 25 and these are

both > 10

) bp » N

³
0:9,

0:9£ 0:1

250

´
) bp » N(0:9, 0:000 36)

Assumptions made are:

(1) the approximation to normal is satisfactory

(2) When selected at random, the life of any tyre is

independent of the life of any other tyre.

b P(bp 6 200
250

)

= P(bp 6 0:8)

¼ 6:82£ 10¡8 which is almost zero

) the chance that bp 6 0:8 is virtually impossible.

c As the chance is practially zero there is little chance that the

manufacturers claim is correct.

EXERCISE F

1 a T1 = 4
12

X1 + 3
12

X2 + 5
12

X3

) E(T1) =
4
12

E(X1) +
3
12

E(X2) +
5
12

E(X3)

= 4
12

¹+ 3
12

¹+ 5
12

¹

= ¹

) T1 is an unbiased estimator of ¹.

b T2 = 2
6
X1 + 1

6
X2 + 3

6
X3

) E(T2) =
2
6

E(X1) +
1
6

E(X2) +
3
6

E(X3)

= 2
6
¹+ 1

6
¹+ 3

6
¹

= ¹

) T2 is an unbiased estimator of ¹.

c Var(T1) = ( 4
12

)2Var(X1) + ( 3
12

)2Var(X2) + ( 5
12

)2Var(X3)

= 16
144

¾2 + 9
144

¾2 + 25
144

¾2

= 50
144

¾2

Var(T2) = ( 2
6
)2¾2 + ( 1

6
)2¾2 + ( 3

6
)2¾2

= 14
36

¾2

( = 56
144

¾2)

) Var(T1) < Var(T2)
) T1 is a more efficient estimator of ¹ than T2.

2 a x10 has distribution

X10 =
X1 +X2 +X3 + ::::+X10

10
with

E(X10) = ¹ and Var(X10) =
¾2

10
Likewise x25 has distribution

X25 =
X1 +X2 + ::::+X25

25
with E(X25) = ¹ and

Var(X25) =
¾2

25
and so Var(X25) < Var(X10)

) X25 is a more efficient estimator of ¹ and so is preferred.

b The larger the sample size n, the smaller the value of

Var(X) =
¾2

n
. Thus, as n increases, the more efficient

the estimator X is of ¹.

3 a E(T1) = E(T2) = µ

E(T ) = aE(T1) + bE(T2)

= aµ + bµ

= (a+ b)µ

and E(T ) = µ , a+ b = 1

b T =
nP

i=1

aiTi

) E(T ) =
nP

i=1

aiE(Ti)

=
nP

i=1

aiµ

= µ
nP

i=1

ai

and E(T ) = µ ,
nP

i=1

ai = 1

4 If T = ¸X1 + (1¡ ¸)X2, 0 6 ¸ 6 1

a E(T ) = ¸E(X1) + (1¡ ¸)E(X2)

= ¸¹+ (1¡ ¸)¹

= ¹

) T is an unbiased estimator for ¹.

b Var(T ) = ¸2Var(X1) + (1¡ ¸)2Var(X2)

= ¸2¾2 + (1¡ ¸)2¾2

= (¸2 + 1¡ 2¸+ ¸2)¾2

= (2¸2 ¡ 2¸+ 1)¾2

To get the most efficient estimator of T of this form we need

to minimise Var(T ) and hence 2¸2 ¡ 2¸ + 1 (as ¾2 is

constant).

Consider f(¸) = 2¸2 ¡ 2¸+ 1

f 0(¸) = 4¸¡ 2

) f 0(¸) = 0 , ¸ = 1
2

) f(¸) is least when ¸ = 1
2

) Var(T ) is least when ¸ = 1
2

) the most efficient estimator of T has ¸ = 1
2

and is

T =
X1 +X2

2
= the sample mean

y = f( )¸
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180 WORKED SOLUTIONS

5 a E(T ) = E( 3
9
S 2
X + 6

9
S 2
Y )

= 3
9

E(S 2
X) + 6

9
E(S 2

Y )

= 3
9

E(S 2
4¡1) +

6
9

E(S 2
7¡1)

= 3
9
¾2 + 6

9
¾2

= ¾2

b Let t =
(n¡ 1)s 2

X
+ (m¡ 1)s 2

Y

n+m¡ 2

) E(T ) =
1

n+m¡ 2
[(n¡ 1)E(S 2

X) + (m¡ 1)E(S 2
Y )]

=
1

n+m¡ 2
[(n¡ 1)¾2 + (m¡ 1)¾2]

fas S 2
X and S 2

Y are unbiased estimates of ¾2g

=
1

n+m¡ 2
¾2(n+m¡ 2)

= ¾2

6 a X » N(¹, ¾2)

X =
X1 +X2 +X3 + ::::+Xn

n

) E(X) =
1

n
E(X1) +

1

n
E(X2) + ::::+

1

n
E(Xn)

=
1

n
(¹+ ¹+ ::::+ ¹) fn ¹sg

=
1

n
n¹

= ¹

Var(X) =
1

n2
Var(X1) +

1

n2
Var(X2) + ::::+

1

n2
Var(Xn)

=
1

n2
(¾2 + ¾2 + ::::+ ¾2)

=
n¾2

n2

=
¾2

n

But Var(X) = E(X
2
)¡ [E(X)]2

)
¾2

n
= E(X

2
)¡ ¹2

) E(X
2
) = ¹2 +

¾2

n
where

¾2

n
> 0

) E(X
2
) > ¹2

b As E(X
2
) 6= ¹2, X

2
is a biased estimator of ¹2.

7 E(X) = ¹X , Var(X) = ¾ 2
X

E(Y ) = ¹Y , Var(Y ) = ¾ 2
Y

a i U = X + Y

E(U) = E(X) + E(Y ) = ¹X + ¹Y

and Var(U) = Var(X) + Var(Y )

= ¾ 2
X + ¾ 2

Y

ii E(X + Y )

= E(X) + E(Y )

= ¹X + ¹Y

= E(U)

) x+ y is an unbiased estimate of E(U).

iii E(S 2
X + S 2

Y )

= E(S 2
X) + E(S 2

Y )

= Var(X) + Var(Y )

= Var(X + Y )

= Var(U)

) s 2
X

+ s 2
Y

is an unbiased estimate of Var(U).

b U = aX + bY , a, b 2 R +

i E(X) = E(aX + bY )

= aE(X) + bE(Y )

= a¹X + b¹Y

Var(U) = Var(aX + bY )

= a2Var(X) + b2Var(Y )

= a2¾ 2
X + b2¾ 2

Y

ii E(aX + bY ) = aE(X) + bE(Y )

= a¹X + b¹Y

= E(U)

) aX + bY is an unbiased estimator for E(U)

) ax+ by is an unbiased estimate for E(U)

iii E(aS 2
X + bS 2

Y )

= aE(S 2
X) + bE(S 2

Y )

= aVar(X) + bVar(Y )

6= Var(U) ffrom b ig
) as 2

X
+ bs 2

Y
is generally not an unbiased estimate

of Var(U).

8 For the sample x = 4:39

SX ¼ 2:793 58 = sn¡1

¾X ¼ 2:550 18 = sn

a An unbiased estimate of ¹ is x = 4:39

b An unbiased estimate of ¾2 is ¼ 2:793 582

¼ 7:8041

c s 2
n ¼ (2:550 18)2 ¼ 6:5034

d s 2
n¡1 =

n

n¡ 1
s 2
n = 6

5
s 2
n

Check:
s 2
n¡1

s 2
n

¼ 1:2 X

9 X » U(0, b)

a E(X) =

Z b

0

x f(x) dx =

Z b

0

1

b
x dx

=

·
1

b

x2

2

¸ b
0

=
b

2

b X is a sample mean estimator of
b

2

Now E(2X) = 2E(X) = 2

³
b

2

´
= b

) 2X is an unbiased estimator of b for all n 2 Z+.

f(x)

xb

Qx
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WORKED SOLUTIONS 181

10 S 2
¹ =

1

n

·
nP

i=1

(Xi ¡ ¹)2

¸
=

1

n

·
nP

i=1

(X 2
i ¡ 2¹Xi + ¹2)

¸
=

1

n

·
nP

i=1

X 2
i ¡ 2¹

nP
i=1

Xi + n¹2

¸
=

1

n

·
nP

i=1

X 2
i ¡ 2¹(n¹) + n¹2

¸
=

1

n

·
nP

i=1

X 2
i ¡ n¹2

¸
=

1

n

nP
i=1

X 2
i ¡ ¹2

) E(S 2
¹ ) =

1

n
E

µ
nP

i=1

X 2
i

¶
¡ ¹2

=
1

n

·
nP

i=1

E(X 2
i )

¸
¡ ¹2

=
1

n

·
nP

i=1

(Var(Xi) + [E(Xi)]
2)

¸
¡ ¹2

fVar(X) = E(X2)¡ [E(X)]2g

=
1

n
(n¾2 + n¹2)¡ ¹2

= ¾2 + ¹2 ¡ ¹2

= ¾2

) S 2
¹ is an unbiased estimator of ¾2.

11 a i t =
4(3) + 9(5) + 20(2)

30
= 97

30

ii For sample A, s 2
n¡1 = 4

3
s 2
n

) s 2
n = 3

4
s 2
n¡1

fso s 2
n¡1 is an unbiased estimate of ¾2g

Likewise for sample B,

For sample C,

b t =
n1s

2
1 + n2s

2
2 + n3s

2
3 + ::::+ nrs

2
r

(n1 ¡ 1) + (n2 ¡ 1) + (n3 ¡ 1) + ::::+ (nr ¡ 1)
or

t =

rP
i=1

nis
2
iµ

nP
i=1

ni

¶
¡ r

12 E(X Y )

= E

·
1

n

nP
i=1

Xi £
1

m

mP
j=1

Yj

¸
=

1

mn
E

µ
nP

i=1

Xi £
mP

j=1

Yj

¶
=

1

mn

nP
i=1

mP
j=1

(E(XiYj))

=
1

mn

nP
i=1

mP
j=1

E(Xi)E(Yj) fas Xi and Yj are independentg

=
1

mn

µ
nP

i=1

E(Xi)

¶µ
mP

j=1

E(Yj)

¶
=

1

mn
(n¹x)(m¹Y )

= ¹X¹Y

) xy is an unbiased estimate of ¹X¹Y .

Note: In order to see this argument clearly work it through with

x = 2, m = 3 say.

13 For n sufficiently large bp » N

µ
p,

p(1¡ p)

n

¶
a E(bp) = p and E(bq) = E(1¡ bp)

= 1¡ E(bp)
= 1¡ p

b E(bpbq) = E(bp(1¡ bp))
= E(bp¡ bp2)
= E(bp)¡ E(bp2)

But Var(bp) = E(bp2)¡ [E(bp)]2
) E

µbpbq
n

¶
=

1

n

£
E(bp)¡ fVar(bp) + [E(bp)]2g¤

=
1

n

·
p¡ p(1¡ p)

n
¡ p2

¸
=

np¡ p+ p2 ¡ np2

n2

=
(n¡ 1)p¡ (n¡ 1)p2

n2

=
n¡ 1

n

µ
p(1¡ p)

n

¶
=

³
n¡ 1

n

´
¾ 2bp

c Since E

µbpbq
n

¶
6= ¾ 2bp ,

bpbq
n

is a biased estimate of ¾ 2bp .

d As

³
n

n¡ 1

´ bpbq
n

=
bpbq

n¡ 1
,

E

µ bpbq
n¡ 1

¶
=

n

n¡ 1
E

µbpbq
n

¶
=

n

n¡ 1

³
n¡ 1

n

´
¾ 2bp

= ¾ 2bp

E(S 2
C
) = 19

20
E(S 2

n¡1) =
19
20

¾2

) E(T ) = 4
30

E(S 2
A ) + 9

30
E(S 2

B ) + 20
30

E(S 2
C )

= 4
30

( 3
4
¾2) + 9

30
( 8
9
¾2) + 20

30
( 19
20

¾2)

=

³
3 + 8 + 19

30

´
¾2

= ¾2

) t is an unbiased estimate of ¾2.

) E(S 2
A ) = 3

4
E(S 2

n¡1) =
3
4
¾2

E(S 2
B
) = 8

9
E(S 2

n¡1) =
8
9
¾2

)
bpbq

n¡ 1
is an unbiased estimate of ¾ 2bp .
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182 WORKED SOLUTIONS

EXERCISE G.1

1 ¹ is unknown, ¾ = 10, n = 35, x = 28:9

a Using a Z-distribution, the 95% confidence interval is

x¡ 1:960
¾p
n

< ¹ < x+ 1:960
¾p
n

Using technology, 25:6 < ¹ < 32:2

b Using a Z-distribution, the 99% confidence interval is

x¡ 2:576
¾p
n

< ¹ < x+ 2:576
¾p
n

Using technology, 24:5 < ¹ < 33:3

c The confidence interval width becomes larger.

2 When increasing the level of accuracy we increase the interval

width (as shown in question 1). We can estimate ¹ in a narrower

interval but with less certainty.

3 Sample size n, ¾ = 11, x = 81:6

a i n = 36, Z-distribution

x¡ 1:960
¾p
n

< ¹ < x+ 1:960
¾p
n

Using technology, 78:0 < ¹ < 85:2

ii n = 100
Using technology, 79:4 < ¹ < 83:8

b As n increases, the width of the confidence interval decreases.

4 Using the Z-distribution, the 95% confidence interval for ¹ is

x¡ 1:960
¾p
n

< ¹ < x+ 1:960
¾p
n

where a = 1:960.

a If P = 99, we need to solve P(Z < a) = 0:995

Using technology gives a ¼ 2:576

b If P = 80, we need to solve P(Z < a) = 0:9
Using technology gives a ¼ 1:282

c If P = 85, we need to solve P(Z < a) = 0:925
) a ¼ 1:440

d If P = 96, we need to solve P(Z < a) = 0:98
) a ¼ 2:054

5 n = 50, standard deviation = ¾, x = 38:7, Z-distribution 95%

confidence interval for ¹ is x¡1:960
¾p
n

< ¹ < x+1:960
¾p
n

a For ¾ = 6, using technology, 37:0 < ¹ < 40:4

b For ¾ = 15, 34:5 < ¹ < 42:9

c As ¾ increases, the width increases.

6 n = 167, x = 8:7, 2:6 6 X 6 15:1

a range = 15:1¡ 2:6

= 12:5

and ¾ ¼ range ¥ 6 ¼ 2:083

So, nearly all scores lie in the interval [¡3, 3] which has

length 6 standard deviations.

b 98% confidence interval for ¹ is

x¡ 2:326
¾p
n

< ¹ < x+ 2:326
¾p
n

Using technology this is 8:33 < ¹ < 9:08

7 n = 75, x = 513:8, sn = 14:9

sn¡1 =

r
n

n¡ 1
sn =

p
75
74

£ 14:9

) sn¡1 ¼ 15:00 funbiased estimate of ¾g
As we had to estimate ¾ using sn from the sample, the

t-distribution applies.

The 99% confidence interval is 509:2 < ¹ < 518:4

8 n = 42, x = 38:2, sn = 4:7

sn¡1 =

r
n

n¡ 1
sn =

p
42
41

£ 4:7

) sn¡1 ¼ 4:757 funbiased estimate of ¾g
As we had to estimate ¾ from sn, the t-distribution applies.

The 90% confidence interval is 37:0 < ¹ < 39:4

9 n = 60, x = 84:6, sn = 16:8

sn¡1 =

r
n

n¡ 1
sn =

p
60
59

£ 16:8

) sn¡1 ¼ 16:94 funbiased estimate of ¾g
As we had to estimate ¾ from sn, the t-distribution applies.

a i 95% confidence interval is 80:2 < ¹ < 89:0

ii 99% confidence interval is 78:8 < ¹ < 90:4

b As n = 50, n is sufficiently large to use the normal

confidence interval

) 84:6¡ 1:960
¾p
n

< ¹ < 84:6 + 1:960
¾p
n

) ¡1:960
¾p
n

< ¹¡ 84:6 < 1:960
¾p
n

) j¹¡ 84:6j < 1:960
¾p
n

Thus 1:960£ 16:94p
n

< 5

)
p
n >

1:96£ 16:94

5
) n > 44:1

) a sample of 45 or more is needed.

10
P

x = 112:5 and
P

x2 = 1325:31

a x =

P
x

n

= 112:5
10

= 11:25

b s 2
n =

P
x2

n
¡ x2

= 1325:31
10

¡ 11:252

= 5:9685

sn¡1 =

r
n

n¡ 1
sn

gives sn¡1 ¼ 2:575

and sn¡1 is an unbiased

estimate of ¾.

c

t-distribution applies.

From technology, 9:96 < ¹ < 12:7

0 5. %0 5. %

99%

-a 0 a Z

99.73 -3 3
Z

% lie between and

for the distribution

-3 0 3 Z As sn¡1 is used as an unbiased estimate of ¾2 the
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WORKED SOLUTIONS 183

11 Using a Z-distribution with ¾ = 17:8, the 98% confidence

interval for ¹ is x¡ 2:326
¾p
n

< ¹ < x+ 2:326
¾p
n

) j¹¡ xj < 2:326
¾p
n

Hence
2:326£ 17:8p

n
< 3

)
p
n >

2:326£ 17:8

3
) n > 190:46::::

) should sample at least 191 packets.

12 a n = 48, s 2
n = 22:09

sn¡1 =

r
n

n¡ 1
sn

=
p

48
47

£ 22:09

= 4:7497::::

¼ 4:75

) sn¡1 = 4:75 is an unbiased estimate of ¾.

b As n is large the 99% confidence interval can be obtained

using the Z-distribution.

The 99% confidence interval for ¹ is

x¡ 2:576
¾p
n

< ¹ < x+ 2:576
¾p
n

) j¹¡ xj < 2:576
¾p
n

) we require
2:576£ 4:7497p

n
< 1:8

)
p
n >

2:576£ 4:7497

1:8
) n > 46:20

) n should be at least 47.

EXERCISE G.2

1 Let X1 = the throwing distance of a 13 year old

X2 = the throwing distance of the same 12 year old

and consider U = X2 ¡X1.

Age A B C D E F G H I J K

u 3 1 7 5 3 2 ¡1 11 6 5 4

a n = 11, u = 4:182 and sn¡1 = 3:219
¾ is unknown, so we use the T -statistic

T =
U ¡ ¹

sn¡1p
11

is T » t(10)

i 95% confidence interval for ¹ is 2:02 6 ¹ 6 6:34

ii 90% confidence interval for ¹ is 2:42 6 ¹ 6 5:94

b The sample of 11 is extremely small and the mean

improvement u < 5 km h¡1.

There is insufficient evidence to accept the sports commission

claim as values < 5 lies within both the 95% and 90%
confidence intervals for ¹.

2 Pair A B C D E F G H

d 0:2 0:6 ¡0:2 0:8 0:2 ¡0:2 0:5 0:2

a n = 8, d = 0:2625, s 2
n¡1 ¼ 0:128 393

b ¾ is unknown so we use the T -statistic

i 95% confidence interval for ¹ is:

¡0:0371 6 ¹ 6 0:5621

ii 99% confidence interval for ¹ is: ¡0:181 6 ¹ 6 0:706

c Both confidence intervals in b contain the value 0 and also

negative values. So, it is possible that ¹ < 0 at both 95%

and 99% levels of confidence. That is, there is insufficient

evidence at these levels to support the manufacturers claim.

d At a level of confidence ®, the confidence interval is:

d¡ t®

2

sn¡1p
n

6 ¹ 6 d+ t®

2

sn¡1p
n

) d+ t®

2

sn¡1p
n

¼ 0:557

) t®

2

=
0:557¡ 0:2625

p
0:128 393p

8

) t®

2

¼ 2:3247

)
®

2
¼ 0:026 513

) ® ¼ 0:0530 (5:3%)

) we have a 94:7% confidence level.

EXERCISE H.1

1 a A Type I error involves rejecting a true null hypothesis.

b A Type II error involves accepting a false null hypothesis.

c The null hypothesis is a statement of no difference.

d The alternative hypothesis is a statement that there is a

difference.

2 a i a Type I error ii a Type II error

b i a Type II error ii a Type I error

3 a The alternative hypothesis (H1) would be that the person on

trial is guilty.

b a Type I error c a Type II error

4 a A Type I error would result if X and Y are determined to

have different effectiveness, when in fact they have the same.

b A Type II error would result if X and Y are determined to

have the same effectiveness, when in fact they have different

effectiveness.

5 a H0: new globe has mean life 80 hours

H1: new globe has mean life > 80 hours

b H0: new globe has mean life 80 hours

H1: new globe has mean life < 80 hours

6 H0: new design has top speed of 26:3 knots

H1: new design has top speed > 26:3 knots

EXERCISE H.2

1 x¡ 1:96
¾p
n

6 ¹ 6 x+ 1:96
¾p
n

) x¡ 1:96
¾p
n

6 ¹ and ¹ 6 x+ 1:96
¾p
n

) x 6 ¹+ 1:96
¾p
n

and x > ¹¡ 1:96
¾p
n

) ¹¡ 1:96
¾p
n

6 x 6 ¹+ 1:96
¾p
n

2 a For ® = 0:05,

z® ¼ 1:645 and z®

2

¼ 1:960
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184 WORKED SOLUTIONS

b For ® = 0:01,

z® ¼ 2:326 and z®

2

¼ 2:576

3 a ¾2 = 15:79, n = 36, x = 23:75

i z¤ =
x¡ ¹0

¾p
n

) z¤ =
23:75¡ 25

p
15:79
6

) z¤ ¼ ¡1:887

ii The null distribution is

iii The p-value = P(Z 6 ¡1:887)

¼ 0:0296 fusing technologyg
b i

As z¤ < ¡z® we reject H0 in favour of H1.

ii As the p-value < 0:05 we reject H0 in favour of H1.

4 a i z > z®, so z > 1:645

ii z > z®, so z > 2:326

b i z < ¡z®, so z < ¡1:645

ii z < ¡z®, so z < ¡2:326

c i
®

2
= 0:025

z < ¡z®

2

or z > z®

2

) z < ¡1:960 or z > 1:960

ii
®

2
= 0:005

z < ¡z®

2

or z > z®

2

) z < ¡2:576 or z > 2:576

5 ¾ = 12:9, n = 200, x = 83:1
a H0: ¹ = 80 and H1: ¹ > 80

b The null distribution is Z with ¾ = 12:9

c z¤ =
x¡ ¹0

¾p
n

=
83:1¡ 80

12:9p
200

d Reject H0 if either z¤ lies in the critical region of Z or the

p-value is < 0:01.

e

f As z¤ lies within the critical region we reject H0 in favour

of H1. or

As the p-value = P(Z > z¤) = 0:000 339 is < 0:01 we

reject H0.

g

6 (1) H0: ¹ = 100 and H1: ¹ < 100

(2) As ¾ is known (¾ = 1:6 g) the null distribution is Z.

(3) The test statistic is z¤ =
x¡ ¹0

¾p
n

=
99:4¡ 100

1:6p
40

(4) We reject H0 if z¤ lies in the critical region.

(5)

(6) Since z¤ lies in the critical region we reject H0 in favour of

H1.

(7) We have sufficient evidence to accept H1, that the mean

weight is less than 100 g net. There is evidence that the

machine which delivers the nuts needs to be adjusted to allow

more nuts into each bag.

7 a (1) H0: ¹ = 22:3 (no difference)

H1: ¹ 6= 22:3 (a difference)

(2) Assuming ¾ = 2:89 is constant the null distribution is

Z.

(3) The test statistic is z¤ =
x¡ ¹

¾p
n

=
21:2¡ 22:3

2:89p
80

¼ ¡3:404

(4) We reject H0 if the p-value < 0:05

(5) p-value = P(Z < ¡3:404 or Z > 3:404) ¼ 0:000 663

(6) Since p-value < 0:05 we reject H0 in favour of H1.

(7) There is sufficient evidence at a 5% level to suggest that

the mean fleece diameter differs in 2012 from 2008.

b With x = 21:2, ¾ = 2:89, n = 80
The 95% confidence interval is 20:57 < ¹ < 21:83 and

¹0 = 21:2 lies within it.

This confirms, at a 95% level of confidence that there is a

significant difference in the means between 2008 and 2012.

8 ¾2 = 2:25 is known, n = 8, x = 1001
(1) H0: ¹ = 1000 g and H1: ¹ > 1000 g

(2) As ¾2 is known we use a Z-distribution.

(3) The test statistic is z¤ =
x¡ ¹0

¾p
n

=
1001¡ 1000

p
2:25p
8

=
1£p

8p
2:25

¼ 1:886

(4) We reject H0 if:

z¤ lies in the critical

region

or the p-value < 0:01

z¤
¡z® = -1 645.

Z

Z

0 01.

2 326.

z¤3 398 =.

Z

0 05.

-1 645.

z¤ = -2 372.

We accept that ¹ > 80 at the 1% level of significance.

P(Type I error) = 0:01.

¼ 3:398

Z » N(0, 1)

¼ ¡2:372
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(5) or p-value

= P(Z > 1:886)

¼ 0:029 67

(6) As z¤ is not in the critical

region we do not reject

H0.

or As p-value is not

< 0:01 we do not

reject H0.

(7) We conclude that there is insufficient evidence to support the

overfilling claim at a 1% level.

(However we may be making a Type II error.)

EXERCISE H.3

1 a For º = 15 and ® = 0:05,
t® ¼ 1:753 and t®

2

¼ 2:131

b For º = 15 and ® = 0:01,
t® ¼ 2:602 and t®

2

¼ 2:947

2 H0: ¹ = 18:5 and H1: ¹ 6= 18:5

a i n = 24, x = 17:14, sn = 4:365

Now sn¡1 =

r
n

n¡ 1
sn

=
p

24
23

£ 4:365

¼ 4:459

which is an unbiased estimate of ¾ and

t¤ =
x¡ ¹0
sn¡1p

n

¼ 17:14¡ 18:5
4:459p

24

) t¤ ¼ ¡1:494

ii The null distribution is t(23).

iii The p-value = 2£ P(T > jt¤j)
= 2£ P(T > 1:494)

¼ 0:1487

b i

As t¤ does not lie in the critical region we do not reject

H0 as there is insufficient evidence to do so. We accept

at a 5% level that ¹ = 18:5 .

ii As p-value is not < 0:05 we do not reject H0 as there is

insufficient evidence to do so. We accept at a 5% level

that ¹ = 18:5 .

3 a H0: ¹ = $13:45, H1: ¹ < $13:45

b As ¾ is unknown we use a t-distribution sn¡1 is used as

an unbiased estimate of ¾ and

sn¡1 =

r
n

n¡ 1
sn

=
p

389
388

£ $0:25

¼ $0:2503

c t¤ ¼ ¡11:82

d p-value = P(T < ¡11:82) = 0 which is < 0:02

e We reject H0 that ¹ = $13:45 at a 2% level. That is, we

accept the claim that the mean price has fallen.

Note: P(Type I error) = 0:02 .

4 x = 499 mL and sn = 1:2 mL

As ¾ is unknown, we use sn¡1 as an unbiased estimate of ¾

and sn¡1 =

r
n

n¡ 1
sn

=
p

10
9

£ 1:2

¼ 1:2649

(1) H0: ¹ = 500 mL and H1: ¹ 6= 500 mL

(2) As ¾ is unknown we use the t-statistic, t(9).

(3) t¤ =
x¡ ¹0
sn¡1p

n

=
499¡ 500

1:2649p
10

) t¤ ¼ ¡2:500 is the test statistic

(4) We reject H0 if:

t¤ lies in the critical

region

or the p-value < 0:01

(5) or p-value

= 2£ P(T > jt¤j)
= 2£ P(T > 2:5)

¼ 0:033 86

(6) As t¤ is not in the critical

region we do not reject

H0.

or As the p-value is not

< 0:01 we do not

reject H0.

(7) We conclude that there is insufficient evidence to suggest that

the sample mean is significantly different from the expected

value, at a 1% level.
(However, we risk making a Type II error by accepting H0

when it is false.)

5 a n = 60, x = 242:6 mg, sn = 7:3 mg

As ¾ is unknown, we use sn¡1 as an unbiased estimate of

¾ and sn¡1 =

r
n

n¡ 1
sn

=
p

60
59

£ 7:3

¼ 7:3616

(1) H0: ¹ = 250 mg and H1: ¹ 6= 250 mg

(2) As ¾ is unknown we use the t-statistic t(59).

(3) t¤ =
x¡ ¹0
sn¡1p

n

¼ 242:6¡ 250

7:3616p
60

) t¤ ¼ ¡7:7864

(4) We reject H0 if:

t¤ lies in the critical

region

or the p-value < 0:05

(5) or p-value

= 2£ P(T > jt¤j)
= 2£ P(T > 7:7864)

¼ 1:26£ 10¡10
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(6) As t¤ lies in the

critical region we

reject H0.

or As the p-value < 0:05
we reject H0.

(7) There is sufficient evidence to reject H0 in favour of H1.

This suggests that at a 5% level we should accept that

¹ 6= 250 and as x was < 250 we surmise that the true

¹ is smaller than 250 mg.

b The 95% confidence interval for ¹ is 240:7 < ¹ < 244:5

which confirms the above as we are 95% confident that ¹ is

well below 250 mg. Hence, we would reject H0 in a and

argue again that ¹ < 250 mg.

6 n = 50, x = 26:1, sn = 6:38

As ¾ is unknown, we use sn¡1 as an unbiased estimate of it

and sn¡1 =

r
n

n¡ 1
sn

=
p

50
49

£ 6:38

¼ 6:4448

(1) H0: ¹ = 24:9 and H1: ¹ > 24:9

(2) As ¾ is unknown, we use the t-statistic, t(49).

(3) t¤ =
x¡ ¹0
sn¡1p

n

¼ 26:1¡ 24:9

6:4448p
50

) t¤ ¼ 1:3166

(4) We reject H0 if:

t¤ lies in the critical

region

or the p-value < 0:05

(5) or p-value

= P(T > t¤)
= P(T > 1:3166)

¼ 0:0970

(6) As t¤ is not in the critical

region we do not reject

H0.

or As the p-value is not

< 0:05 we do not

reject H0.

(7) We conclude that, at a 5% level, there is insufficient evidence

to suggest that the non-free range chickens have a greater meat

protein content.

7 x = E96 318, sn = E14 268, n = 113

a sn¡1 =

r
n

n¡ 1
sn

=
p

113
112

£ E14 268

¼ E14 331:55

) E14 331:55 is an unbiased estimate of ¾.

b H0: ¹ = E95 000 and H1: ¹ > E95 000

c As ¾ is unknown and we have to estimate it, the null

distribution is a t-distribution with º = n¡ 1 = 112.

d t¤ ¼ 0:9776

e p-value = P(t > 0:9776) ¼ 0:1652

f Critical value is t0:02 ¼ 2:078 as we need to solve

P(t > k) = 0:02

or P(t < k) = 0:98

using technology with inverse t.

g As t¤ ¼ 0:9776 is < 2:078 we have insufficient evidence

to reject H0.

So, we reject the claim that ¹ > E95 000.

h If the assertion was incorrect, that is, accepting H0 when H1

is correct, we would be making a Type II error.

i The 99% confidence interval for the mean income is

E92 785 < ¹ < E99 851.

This interval confirms that there is not enough evidence to

reject H0 as ¹ = 95 000 lies within the interval.

Although ® = 0:02, we verify with a 99% confidence

interval as we have a one-tailed test.

EXERCISE H.4

1 Let X1 represent the test score before coaching,

X2 represent the test score after coaching

and let U = X2 ¡X1.

U-values are 5, ¡1, 0, 7, 0, ¡1, 3, 3, 4, ¡1, 1, ¡6

U ¼ 1:1667, sn¡1 ¼ 3:4597, n = 12

(1) H0: ¹ = 0 fno improvementg, H1: ¹ > 0

(2) As ¾ is not known we use a t-distribution with t(11), and

use sn¡1 as an unbiased estimate of ¾.

(3) Test statistic is t¤ ¼ 1:168

(4) We reject H0 if:

t¤ does not lie in the

critical region

or the p-value is < 0:05

(5) or p-value

= P(T > t¤)
= P(T > 1:168)

¼ 0:1337

(6) As t¤ does not lie in the

rejection region we do not

reject H0.

or As the p-value is not

< 0:05 we do not

reject H0.

(7) We conclude that, at a 5% level, there is insufficient evidence

to support that there has been improvement.

2 Let X1 = speed at age 12,

X2 = speed at age 13

and let U = X2 ¡X1, n = 11

The U-values are: 3, 1, 7, 5, 3, 2, ¡1, 11, 6, 5, 4

U ¼ 4:1818 and sn¡1 ¼ 3:2193

(1) H0: ¹ = 5 and H1: ¹ 6= 5

(2) As ¾ is unknown we use the t-statistic, t(10). We use sn¡1

as an unbiased estimate of ¾.

(3) The test statistic, t¤ =
U ¡ ¹0
sn¡1p

n

¼ 4:1818¡ 5
3:2193p

11

¼ ¡0:842 86
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(4) We reject H0 if:

t¤ does not lie in the

critical region

or the p-value is < 0:05

(5) or p-value

= 2P(T > jt¤j)
= 2£ P(T > 0:842 86)

¼ 0:4190

(6) As t¤ does not lie in the

critical region we do not

reject H0.

or As the p-value is not

less than 0:05 we do

not reject H0.

(7) We conclude, at a 5% level, that there is insufficient evidence

to reject the sports commission’s claim.

3 Let X1 = height using Type 1 compost,

X2 = height using Type 2 compost

and let U = X2 ¡X1.

U -values are: 0:2, 0:6, ¡0:2, 0:8, 0:2, ¡0:2, 0:5, 0:2

where U ¼ 0:2625 and sn¡1 ¼ 0:358 32

(1) H0: ¹ = 0 and H1: ¹ > 0

(2) As ¾2 is unknown we use the t-statistic, t(7) and sn¡1

as an unbiased estimate of ¾.

(3) t¤ =
U ¡ ¹0
sn¡1p

n

¼ 0:2625¡ 0

0:358 32p
8

) t¤ ¼ 2:072

(4) We reject H0 if:

t¤ does not lie in the

critical region

or the p-value < 0:05

(5) or p-value

= P(T > jt¤j)
= P(T > 2:072)

¼ 0:0385

which is < 0:05

(6) As t¤ lies in the critical

region we reject H0.

or As the p-value is

< 0:05, we reject H0.

(7) We conclude, at a 5% level, that there is sufficient evidence

to support the claim that Type 2 compost improves growth

over Type 1 compost.

EXERCISE H.5

1 a i

If ® = 0:05, we accept H0 if

x < ¹0 + 1:6449
¾p
n

) x < 27 + 1:6449£
p
6p
9

) x < 28:343

ii If ® = 0:01,

we accept H0 if x < 27 + 2:3263£
p

2
3

) x < 28:899

b i P(Type II error), ® = 0:05

= P(accepting H0 j H1 is true)

= P(X < 28:343 j ¹0 = 29:2)

= P(X < 28:343 j X » N(29:2, 6
9
))

¼ 0:147

ii P(Type II error), ® = 0:01

= P(accepting H0 j H1 is true)

= P(X < 28:899 j X » N(29:2, 6
9
))

¼ 0:356

2 n = 16, ¹ = unknown, ¾2 = 64

H0: ¹ = 150 and H1: ¹ > 150

Decision rule: accept H0 if x 6 155 otherwise reject it.

a ® = P(Type I error)

= P(rejecting H0 j H0 is true)

= P(X > 155 j ¹0 = 150)

= P(X > 155 j X » N(150, 64
16

))

= P(X > 155 j X » N(150, 4))

¼ 0:006 21 (about 0:621%)

b i P(Type II error)

= P(accepting H0 j H1 is true)

= P(X 6 155 j X » N(159, 4))

¼ 0:0228

ii When P(Type I error) = P(Type II error),

the critical value for x =
150 + 159

2
= 154:5

Check:
P(Type I error)

= P(X > 154:5 j X » N(150, 4))

¼ 0:012 22

P(Type II error)

= P(X 6 154:5 j X » N(159, 4))

¼ 0:012 22 X

3 n = 30, ¹ = unknown, ¾2 = 7:5

H0: ¹ = 37 and H1: ¹ < 37
a

x > ¹0 ¡ 1:6449
¾p
n

) x > 37¡ 1:6449£
p
7:5p
30

) x > 37¡ 1:6449£
p

1
4

) x > 36:178

) accept H0 if x > 36:178, otherwise reject it.
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b True mean is ¹ = 36

¯ = P(Type II error)

= P(accepting H0 j H1 is true)

= P(X > 36:178 j X » N(36, 1
4
))

¼ 0:361

) power = 1¡ ¯ ¼ 0:639

( ¼ 63:9%)

c If P(Type II error) = 0:1

P(accepting H0 j H1 is true) = 0:1

) P(X > 36:178 j X » N(¹, 1
4
)) = 0:1

) P

0@X ¡ ¹

¾p
n

>
36:178¡ ¹

¾p
n

1A = 0:1

) P

³
Z >

36:178¡ ¹

0:5

´
= 0:1

) P

³
Z 6

36:178¡ ¹

0:5

´
= 0:9

)
36:178¡ ¹

0:5
¼ 1:2816

) 36:178¡ ¹ ¼ 0:6408

) ¹ ¼ 35:5

4 ¹ = 6:4, ¾ = 0:7 kg, n = 15, ® = 0:05

a H0: ¹ = 6 and H1: ¹ > 6

Accept H0 if x 6 ¹0 + 1:6449£ 0:7p
15

) x 6 6:2973

otherwise reject it.

P(Type II error)

= P(accepting H0 j H1 is true)

= P(X 6 6:2973 j X » (6:4, 0:72

15
))

¼ 0:285

b H0: ¹ = 6 and H1: ¹ 6= 6

Accept H0 if ¹0 ¡ z0:025
¾p
n

6 x 6 ¹0 + z0:025
¾p
n

) 6¡ 1:960£ 0:7p
15

6 x 6 6 + 1:960£ 0:7p
15

) 5:6458 6 x 6 6:3542,

otherwise reject it.

P(Type II error)

= P(accepting H0 j H1 is true)

= P(5:6458 6 X 6 6:3542 j X » N(6:4, 0:72

15
))

¼ 0:400

) power ¼ 1¡ 0:400 ¼ 0:600

c H0: ¹ = 6 and H1: ¹ < 6

We accept H0 if x > 6¡ 1:6449£ 0:7p
15

) accept H0 if x > 5:7027, otherwise reject it.

P(Type II error)

= P(accepting H0 j H1 is true)

= P(X > 5:7027 j X » N(6:4, 0:72

15
))

¼ 0:999 94

) power ¼ 0:000 06 (virtually 0).

5 Let X = length of a beam (in m).

X » N(¹, 0:152)

a H0: ¹ = 3:5 m and H1: ¹ 6= 3:5 m

b

We reject H0 if

¹0 ¡ z®

2

¾p
n

6 x 6 ¹0 + z®

2

¾p
n

) 3:5¡ 2:5758

³
0:15p
20

´
6 x 6 3:5 + 2:5758

³
0:15p
20

´
) 3:4136 6 x 6 3:5864

c P(Type II error)

= P(accepting H0 j H1 is true)

= P(3:4136 6 X 6 3:5864 j X » N(3:4, 0:152

20
))

¼ 0:343

EXERCISE H.6

1 a H0: The die is fair for rolling a ‘4’, so p = 1
4

H1: The die is unfair, so p 6= 1
4

b i A Type I error is rejecting H0 when it is true. This means

deciding it is biased when it is in fact fair.

ii P(Type I error)

= P(Reject H0 j H0 is true)

= P(X 6 61 or X > 89 j p = 1
4
)

where X » B(300, 1
4
)

= 1¡ P(62 6 X 6 88) with X » B(300, 1
4
)

= 1¡ [P(X 6 89)¡ P(X 6 61)]

¼ 1¡ 0:971 68 + 0:337 85

¼ 0:0621

iii The test is about the 6:2% level.

c If H0 is true, X » B(300, 1
4
).

For the hypotheses in a we have a two-tailed test with

X

0 025.

x ¹0 0.025+ z ¾p
n

0 025.

¹0 0.025- z ¾p
n
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® ¼ 0:02 and
®

2
¼ 0:01.

Solving P(X 6 k) = 0:01 gives k = 58

P(X 6 k) = 0:99 gives k = 92

The new decision rule is:
Roll the die 300 times. If the number of 4s obtained (X) is

such that 58 6 X 6 92, accept H0, otherwise reject it.

d If p = 0:32, then X » b(300, 0:32)

) P(Type II error)

= P(62 6 X 6 88 j X » B(300, 0:32))

= P(X 6 88)¡ P(X 6 61)

¼ 0:177

2 Y = volume of drink can (in cm3)

Y » N(¹, 22)

) Y » N(¹, 22

16
)

) Y » N(¹, ( 1
2
)2)

H0: ¹ = 330 against H1: ¹ 6= 330

Critical region is y < 329 or y > 331

a ® = P(Type I error)

= P(rejecting H0 j H0 is true)

= P(Y < 329 or Y > 331 j ¹ = 330)

= 1¡ P(329 6 Y 6 331 j ¹ = 330)

¼ 0:0455

So ® ¼ 4:55%

b P(Type II error)

= P(accepting H0 j H1 is true)

= P(329 6 Y 6 331 j Y » N(328, ( 1
2
)2))

¼ 0:022 75

3 a H0: p = 0:5 (the coin is fair)

H1: p > 0:5 (coin is biased towards heads)

b i X > 10 is the critical region.

ii The significance level (®) of a hypothesis test is the

probability of making a Type I error. That is, the

probability of rejecting the null hypothesis H0 when it

is indeed true.

® = P(rejecting H0 j H0 is true)

= P(X > 10 j X » B(12, 1
2
))

= 1¡ P(X 6 9 j X » B(12, 0:5))

¼ 0:0193

c If p is in fact 0:6

P(Type II error)

= P(accepting H0 j p = 0:6)

= P(X 6 9 j X » B(12, 0:6))

¼ 0:917

d Eri would accept H0 when H1 is true and so risks making a

Type II error.

4 H0: ¸ = 2 against H1: ¸ = 5

We accept H0 if X 6 3

We reject H0 if X > 4

a If n = 1, X » Po(¸)

i P(reject H0 j H0 is true)

= P(X > 4 j X » Po(2))

= 1¡ P(X 6 3 j X » Po(2))

¼ 0:143

ii P(accept H0 j H1 is true)

= P(X 6 3 j X » Po(5))

¼ 0:265

b i We require that:

P(accept H0 j H1 is true) to be < 0:005

) P(X 6 3 j X » Po(5n)) < 0:005

If n = 1, P(X 6 3 j X » Po(5)) ¼ 0:265 fa iig
If n = 2, P(X 6 3 j X » Po(10)) ¼ 0:0103

If n = 3, P(X 6 3 j X » Po(15)) ¼ 0:000 211

which is < 0:005

) n = 3 minutes is required.

ii P(rejecting H0 j H0 is true)

= P(X > 4 j X » Po(3£ 2))

= 1¡ P(X 6 3 j X » Po(6))

¼ 0:849

5 Either or

We accept H0 if all 4 are black

reject H0 if some of the 4 are white.

a P(Type I error) = P(reject H0 j H0 is true)

= P(not all 4 are black from box (1))

= 1¡ P(all 4 are black from (1))

= 1¡ C80
4 C20

0

C100
4

¼ 0:597

P(Type II error) = P(accepting H0 j H1 is true)

= P(all 4 are black from box (2))

=
C50
4 C50

0

C100
4

¼ 0:0587

b Power for above test = 1¡ ¯

¼ 1¡ 0:0587

¼ 0:9413 or 94:1%

For the new test:
P(Type II error)

= P(accepting H0 j H1 is true)

= P(3 or 4 are black from box (2))

=
C50
3 C50

1

C100
4

+
C50
4 C50

0

C100
4

¼ 0:249 92 + 0:058 73

¼ 0:308 65

and 1¡ ¯ ¼ 0:691 or 69:1%
) the new decision rule does not give greater power.
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190 WORKED SOLUTIONS

6 H0: he rolls a 6, 9 times every 10 rolls ) p = 0:9

H1: p < 0:9

a i Let X = number of 6s in six rolls
) X » B(6, 0:9)

P(5 or 6 sixes j p = 0:9)

= P(X > 5 j X » B(6, 0:9))

= 1¡ P(X 6 4 j X » B(6, 0:9))

¼ 0:886

ii P(1 six in 6 rolls j X » B(6, 1
6
))

= P(X > 5 j X » B(6, 1
6
))

¼ P(X 6 4 j X » B(6, 1
6
))

¼ 0:000 664

b H0: p = 0:9 against H1: p < 0:9
We will accept H0 if X > 4 and

reject H0 if X 6 3.

i P(accept H0 j X » B(6, 1
6
))

= P(X > 4 j X » B(6, 1
6
))

= 1¡ P(X 6 3 j X » B(6, 1
6
))

¼ 0:008 70

ii P(reject H0 j X » B(6, 0:9))

= P(X 6 3 j X » B(6, 0:9))

¼ 0:0159

Note: i gives a Type II error

ii gives a Type I error

7 X » Po(m) H0: m = 3

H1: m = 4

Let S =
9P

i=1

xi

The critical region is S 6 37 for H0 acceptance and

S > 38 for H1 acceptance.

a ® = P(Type I error)

= P(rejecting H0 j H0 is true)

= P(S > 38 j m = 3)

= 1¡ P(S 6 37 j S » Po(3£ 9))

¼ 0:0263

) ® ¼ 2:63%

b Power

= 1¡ P(Type II error)

= 1¡ P(accepting H0 j H1 is true)

= 1¡ P(S 6 37 j m = 4)

= 1¡ P(S 6 37 j S » Po(4£ 9))

¼ 0:391 (or ¼ 39:1%)

8 X » Geo(p). H0: p = 0:25 and H1: p = 0:38

a S =
12P
i=1

xi is NB(12, p) and the critical region for rejecting

H0 is S 6 29 or S > 72

b P(Type I error)

= P(rejecting H0 j H0 is true)

= P(S 6 29 or S > 72 j p = 0:25)

= P(S 6 29 j p = 0:25) + 1¡ P(S 6 71 j p = 0:25)

=
29P

i=12

¡
i¡1
11

¢
(0:25)12(0:75)i¡12

+ 1¡
71P

i=12

¡
i¡1
11

¢
(0:25)12(0:75)i¡12

¼ 0:039 03 + 1¡ 0:961 54

¼ 0:0775

c P(Type II error)

= P(accepting H0 j H1 is true)

= P(30 6 S 6 71 j p = 0:38)

= P(S 6 71 j p = 0:38)¡ P(S 6 29 j p = 0:38)

¼ 0:999 97¡ 0:421 49

¼ 0:578

EXERCISE I.1

1 a

b There is weak to moderate negative correlation.

c x = 3, y = 10 are drawn in a.
These lines and the data points within the four quadrants do

support the decision in b, as there are 4 data points in the

‘negative’ quadrants and only 1 in the ‘positive’ quadrants.

d From technology, ¾x = 1 and ¾y = 2

r =
1

n

nP
i=1

(zxi )(zyi )

= 1
10

10P
i=1

³
xi ¡ 3

1

´³
yi ¡ 10

2

´
= 1

20

10P
i=1

(xi ¡ 3)(yi ¡ 10)

= 1
20

[(¡1£¡2) + (¡1£ 0) + (¡1£ 2) + (¡1£ 4)

+ (0£¡2) + (0£ 0) + (0£ 2) + (1£¡2)

+ (1£ 0) + (2£¡2)]

= 1
20

[2¡ 2¡ 4¡ 2¡ 4]

= 1
20

[¡10]

= ¡0:5

2 a
nP

i=1

(xi ¡ x)(yi ¡ y)

=
nP

i=1

(xiyi ¡ yxi ¡ xyi + x y)

=
nP

i=1

xiyi ¡ y
P

xi ¡ x
P

yi + nx y

=
nP

i=1

xiyi ¡ y(nx)¡ x(ny) + nx y

=
nP

i=1

xiyi ¡ nx y

8

10

12

14

2 3 4 5 6

x = x = 3

y = y = 10

y

x
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WORKED SOLUTIONS 191

nP
i=1

(xi ¡ x)2 =
nP

i=1

(x 2
i ¡ 2xxi + x2)

=
nP

i=1

x 2
i ¡ 2x

nP
i=1

xi + nx2

=
nP

i=1

x 2
i ¡ 2x(nx) + nx2

=
nP

i=1

x 2
i ¡ nx2

Likewise
nP

i=1

(yi ¡ y)2 =
nP

i=1

y 2
i ¡ ny2

Thus r =

nP
i=1

xiyi ¡ nx ysµ
nP

i=1

x 2
i

¡ nx2

¶µ
nP

i=1

y 2
i

¡ ny2

¶
b
P

xiyi = 16 + 20 + 24 + 28 + 24 + 30 + 36 + 32

+ 40 + 40

= 290P
x 2
i = 4 + 4 + 4 + 4 + 9 + 9 + 9 + 16 + 16 + 25

= 4£ 4 + 3£ 9 + 2£ 16 + 25

= 100P
y 2
i = 82 + 102 + 122 + 142 + 82 + 102 + 122 + 82

+ 102 + 82

= 4£ 82 + 3£ 102 + 2£ 122 + 142

= 1040

) r =
290¡ 10£ 3£ 10p

(100¡ 10£ 32)(1040¡ 10£ 102)

=
¡10p
10£ 40

= ¡10
20

= 0:5

Technology gives the values for x, y, n,
P

x 2
i ,
P

y 2
i ,P

xiyi, and r.

3 a

b The data appears to have a strong positive correlation.

c From technology,
P

xy = 33321

x = 83:42,
P

x = 1001,
P

x2 = 84 749

y = 32:83,
P

y = 394,
P

y2 = 13126

) r =

12P
i=1

xiyi ¡ nxys
nP

i=1

x 2
i

¡ nx2

s
nP

i=1

y 2
i

¡ ny2

=
33 321¡ 12(83:42)(32:83)p

84 749¡ 12£ 83:422
p

13 126¡ 12£ 32:832

¼ 0:935 confirming a strong positive correlation

(Technology could have been used here.)

4 a

b Using technology, r ¼ 0:816

c There appears to be a moderate positive correlation.

5 a

b Negative, as a line of best fit by eye would have negative

slope.

c From technology, r ¼ ¡0:911

d There appears to be a strong negative correlation between the

variables.

e As the distance from goal increases, the number of successful

shots generally decreases.

f Yes, as the distance from the goal does affect the player’s

ability to become successful.

6 a For x 1 2 3

y 1 3 4

r ¼ 0:982

b i For u = 2x+ 1, v = 3y ¡ 1

u 3 5 7

v 2 8 11

ii r ¼ 0:982

c i For u = ¡2x+ 1, v = 3y ¡ 1

u ¡1 ¡3 ¡5

v 2 8 11

ii r ¼ ¡0:982

d i For u = 2x+ 1, v = ¡3y ¡ 1

u 3 5 7

v ¡4 ¡10 ¡13

ii r ¼ ¡0:982

25

30

35

40

60 70 80 90 100

y

x

y

x
1 2 3 4 5 6 7 8

2

4

6

8

10

y

x
1 2 3 4 5 6 7

5

10

15

20
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192 WORKED SOLUTIONS

e i For u = ¡2x+ 1, v = ¡3y ¡ 1

u ¡1 ¡3 ¡5

v ¡4 ¡10 ¡13

ii r ¼ 0:982

f For u = ax+ b and v = cx+ d, u and v have the same

correlation coefficient, r, as x and y if ac > 0, or have

correlation coefficient ¡r if ac < 0.

EXERCISE I.2

1 Cov(X, Y ) = E(XY ) ¡ E(X)E(Y )

a Cov(X, X) = E(X2)¡ [E(X)]2

= Var(X)

b Cov(X, X + Y )

= E(X(X + Y )¡ E(X)E(X + Y ))

= E(X2 +XY )¡ E(X)E(X + Y )

= E(X2) + E(XY )¡ E(X)[E(X) + E(Y )]

= E(X2) + E(XY )¡ [E(X)]2 ¡ E(X)E(Y )

= E(X2)¡ [E(X)]2 + E(XY )¡ E(X)E(Y )

= Var(X) + Cov(X, Y )

= Cov(X, X) + Cov(X, Y ) ffrom ag
c If X = c, Cov(XY ) = E(cY )¡ E(c)E(Y )

= cE(Y )¡ cE(Y )

= 0 for any random variable Y

2 Cov(X + Y , X ¡ Y )

= E((X + Y )(X ¡ Y ))¡ E(X + Y )E(X ¡ Y )

= E(X2 ¡ Y 2)¡ [E(X) + E(Y )][E(X)¡ E(Y )]

= E(X2)¡ E(Y 2)¡ [E(X)]2 + [E(Y )]2

= E(X2)¡ [E(X)]2 ¡ fE(Y 2)¡ [E(Y )]2g
= Var(X)¡ Var(Y )

or Cov(X, X)¡ Cov(Y , Y )

3 Var(X + Y )

= E((X + Y )2)¡ [E(X + Y )]2

= E(X2 + 2XY + Y 2)¡ [E(X) + E(Y )]2

= E(X2) + 2E(XY ) + E(Y 2)

¡ [E(X)]2 ¡ 2E(X)E(Y )¡ [E(Y )]2

= E(X2)¡ [E(X)]2 + E(Y 2)¡ [E(Y )]2

+ 2(E(XY )¡ E(X)E(Y ))

= Var(X) + Var(Y ) + 2Cov(X, Y )

4 ½ =
Cov(X , Y )p
Var(X)Var(Y )

) ½2 =
fCov(X, mX + c)g2
Var(X)Var(mX + c)

) ½2 =
fE(mX2 + cX)¡ E(X)E(mX + c)g2

VarXfm2Var(X)g

) ½2 =
fmE(X2) + cE(X)¡m[E(X)]2 ¡ cE(X)g2

m2[Var(X)]2

) ½2 =
fm(E(X2)¡ [E(X)]2)g2

m2[Var(X)]2

) ½2 =
fmVar(X)g2
m2[Var(X)]2

) ½2 = 1 fas m 6= 0g
) ½ = §1

5 The product moment correlation coefficient of U and V

=
Cov(U , V )p
Var(U)Var(V )

=
Cov(a+ bX, c+ dY )p
Var(a+ bX)Var(c+ dY )

=
E((a+ bX)(c+ dY ))¡ E(a+ bX)E(c+ dY )p

b2Var(X)d2Var(Y )

=
E(ac+ adY + bcX + bdXY )¡ [a+ bE(X)][c+ dE(Y )]

jbdj
p

Var(X)Var(Y )

=

ac+ adE(Y ) + bcE(X) + bdE(XY )
¡ ac¡ adE(Y )¡ bcE(X)¡ bdE(X)E(Y )

jbdj
p

Var(X)Var(Y )

=
bd[E(XY )¡ E(X)E(Y )]

jbdj
p

Var(X)Var(Y )

= §1£ Cov(X, Y )p
Var(X)Var(Y )

= §½

6 ¾ 2
X

= 1, ¾ 2
Y

= 9, ½ = 1
9

From 3,

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y )

= ¾ 2
X + ¾ 2

Y + 2½¾X¾Y½
as ½ =

Cov(X , Y )p
Var(X)Var(Y )

¾
) Var(X + Y ) = 1 + 9 + 2( 1

9
)£ 1£ 3

= 10 2
3

Now the correlation coefficient between X and X + Y

=
Cov(X, X + Y )p

Var(X)
p

Var(X + Y )

=
Var(X) + Cov(X, Y )p

VarX
p

Var(X + Y )

=
¾X + ½¾X¾Y

¾X £
q

32
3

=
1 + 1

9 (1)(3)

1£
q

32
3

= 4
3
£
p

3
32

= 1p
6

EXERCISE I.3

1 a From technology, r ¼ 0:671 69
The regression of Y on X is y ¼ 0:882 78x+ 5:5957
The regression of X on Y is x ¼ 0:511 08y + 2:7382

b If y = 11, x ¼ 0:511 08£ 11 + 2:7382

¼ 8:36

is the estimated score for Mathematics.

c If x = 18, y ¼ 0:882 78£ 18 + 5:5957

¼ 21:5

is the estimated score for Physics.
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WORKED SOLUTIONS 193

d y = 11 is within the given y-values whereas x = 18 is

outside the given x-values. As we cannot guarantee that the

linear model continues outside the given values, we expect

the estimated score for Mathematics to be more accurate.

2 a From technology, r ¼ 0:905 84
The regression line for Y on X is y ¼ 16:960x¡ 35:528
The regression line for X on Y is x ¼ 0:048 380y+2:7031

b If y = 60, x = 0:048 380£ 60 + 2:7031

¼ 5:61 is the estimated cholesterol level.

c If x = 5:8, y = 16:960£ 5:8¡ 35:528

¼ 63 is the estimated resting heart rate.

3 a From technology, r ¼ ¡0:940 46
The regression line for Y on X is y ¼ ¡1:2768x+218:70
The regression line for X on Y is x ¼ ¡0:692 69y+159:72

b When x = 65, y ¼ ¡1:2768£ 65 + 218:70

¼ 135:7 sec

is the estimated time to swim 200 m breaststroke.

4 a i r ¼ 0:784 00 (moderate, positive)

ii r ¼ 0:947 74 (strong, positive)

iii r ¼ 0:054 72 (very weak, positive)

b w% =
y

x
£ 100%

Men

Wt (x) 89 88 66 59 93 73 82 77 100 67

%BF (w) 13:5 15:9 13:6 16:9 23:7 17:8 15:9 14:3 19:0 17:9

Women

Wt (y) 57 68 69 59 62 59 56 66 72

%BF (w) 29:8 32:4 34:8 30:5 29:0 25:4 28:6 33:3 33:3

c i r ¼ 0:341 81 (weak, positive)

ii r ¼ 0:790 75 (moderate, positive)

iii r ¼ ¡0:4620 (weak, negative)

EXERCISE I.4

1 H0: ½ = 0 against H1: ½ 6= 0

n = 10, ) º = df = 8

(1) r ¼ 0:671 69

(2) t¤ ¼ 0:671 69£
r

8

1¡ 0:671 692

) t¤ ¼ 2:5644

(3) Either p-value = 2£ P(T < 2:5644)

¼ 0:0334

which is < 0:05 but > 0:01

or ® = 0:05

® = 0:01

) t¤ is inside the critical region for ® = 0:05 but outside

it for ® = 0:01.

(4) At a 5% level, we accept H0 that the data is not correlated.

At a 1% level, we do not accept H0. We accept that the data

is correlated.

2 H0: ½ = 0 against H1: ½ 6= 0

n = 10, ) º = df = 8

(1) r ¼ 0:905 84

(2) t¤ ¼ 0:905 84£
r

8

1¡ 0:905 842

) t¤ ¼ 6:0481

(3) Either p-value = 2£ P(T > 6:0481)

¼ 0:000 307

which is < 0:05 and is < 0:01

or ® = 0:05

® = 0:01

and for both levels t¤ does not lie in the critical region.

(4) At both the 5% level and 1% level we accept H0, that the

data is not correlated.

3 H0: ½ = 0 against H1: ½ 6= 0

(1) r ¼ 0:695 58

(2) t¤ ¼ 0:695 58£
r

7

1¡ 0:695 582

) t¤ ¼ 2:5615

(3) p-value = 2£ P(T > 2:5615)

¼ 0:0375

which is < 0:05 but > 0:01

(4) At a 5% level we accept H0 that the data is not correlated.

At a 1% level we do not accept H0. We accept that the data

is correlated.

4 H0: ½ = 0 against H1: ½ 6= 0

(1) r ¼ 0:606 886

(2) t¤ ¼ 0:606 886£
r

9

1¡ 0:606 8862

) t¤ ¼ 2:291

(3) For ® = 0:05, t®

2

= t0:025 ¼ 2:262

t¤ lies in the critical region.

t0.025

¼ 2.306
-t0.025

¼ -2.306

t¤ ¼ 2.5644

T

t0.005

¼ 3.355
-t0.005

¼ -3.355

t¤ ¼ 2.5644

T

t0.025

¼ 2.306
-t0.025

¼ -2.306

t¤ ¼ 6.0481

T

t0.005

¼ 3.355
-t0.005

¼ -3.355

T

t¤ ¼ 6.0481

t¤

T
-2 262. 2 262.
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194 WORKED SOLUTIONS

For ® = 0:01, t®

2

= t0:005 ¼ 3:250

t¤ does not lie in the critical region.

(4) So, at a 5% level we do not accept the data is uncorrelated

but at a 1% level we do.
At a 1% level we accept that ½ = 0 and therefore that X

and Y are independent. However, we do not accept this at a

5% level.

5 t¤ = r

r
n¡ 2

1¡ r2
= ¡0:5

r
14

1¡ 0:25
¼ ¡2:16

p-value = 2£ P(T > 2:16)

¼ 0:0485

which is less than 0:05 but not less than 0:01.

So, at a 5% level we reject H0: ½ = 0 in favour of

H1: ½ 6= 0, and at a 1% level we do not reject H0.

Thus, at a 1% level we accept that ½ = 0 and therefore X and

Y are uncorrelated.

However, we do not accept this at a 5% level.

6 If r = 1, the t¤ calculation would be t¤ = 1 £
r

n

1¡ 1
which is undefined.

Thus the hypothesis test is unusable.

The test is unnecessary as perfect positive correlation exists.

7 We test H0: ½ = 0 against H1: ½ 6= 0 with r = 0:6

The t-statistic is t¤ = 0:6

r
n¡ 2

1¡ 0:62

= 0:75
p
n¡ 2

For infinitely many degrees of freedom the t-distribution

approximates the normal distribution Z » N(0, 1) where

t®

2

¼ z®

2

= z0:025 ¼ 1:960

If t¤ > 1:960 then 0:75
p
n¡ 2 > 1:960

)
p
n¡ 2 > 2:613::::

) n¡ 2 > 6:829::::

) n > 8:829::::

) n > 9

If n = 9, º = 7, t0:025 ¼ 2:365, t¤ ¼ 1:984

) t¤ < t0:025

If n = 10, º = 8, t0:025 ¼ 2:306, t¤ ¼ 2:121

) t¤ < t0:025

If n = 11, º = 9, t0:025 ¼ 2:262, t¤ ¼ 2:250

) t¤ < t0:025

If n = 12, º = 10, t0:025 ¼ 2:228, t¤ ¼ 2:372

) t¤ > t0:025

For n = 12 we would reject H0: ½ = 0 in favour of

H1: ½ 6= 0

) a sample size of at least 12 is required to conclude, at a

1% level of significance, that X and Y are correlated.

8 We test H0: ½ = 0 against H1: ½ 6= 0 with n = 20, º = 18

The t-statistic is t¤ = r

r
18

1¡ r2

For ® = 0:05, t®

2

= t0:025 ¼ 2:1009

We reject H0: ½ = 0 if jt¤j > 2:1009

) jrj
r

18

1¡ r2
> 2:1009

)
r2 £ 18

1¡ r2
> 4:4139

) 18r2 > 4:4139¡ 4:4139r2

) 22:4139r2 > 4:4139

) r2 >
4:4139

22:4139
= 0:196 926

)
p
r2 >

p
0:196 926 ¼ 0:443 76

) jrj > 0:443 76

) least value of jrj is 0:444 (to 3 s.f.)

REVIEW SET A

-3.250

t¤

T3.250

1 a i E(X1 + 2X2 + 3X3)

= E(X1) + 2E(X2) + 3E(X3)

= ¹+ 2¹+ 3¹

= 6¹

Var(X1 + 2X2 + 3X3)

= Var(X1) + 22Var(X2) + 32Var(X3)

= ¾2 + 4¾2 + 9¾2

= 14¾2

) X1 + 2X2 + 3X3 has mean 6¹ and a standard

deviation ¾
p
14.

ii E(2X1 ¡ 3X2 +X3)

= 2E(X1)¡ 3E(X2) + E(X3)

= 2¹¡ 3¹+ ¹

= 0

Var(2X1 ¡ 3X2 +X3)

= 22Var(X1) + (¡3)2Var(X2) + Var(X3)

= 4¾2 + 9¾2 + ¾2

= 14¾2

) 2X1 ¡ 3X2 + X3 has mean 0 and standard

deviation ¾
p
14.

b We use E(X2) = Var(X) + [E(X)]2

E([X1 ¡X2]
2)

= E(X 2
1 ¡ 2X1X2 +X 2

2 )

= E(X 2
1 )¡ 2E(X1X2) + E(X 2

2 )

= ¾2 + ¹2 ¡ 2E(X1)E(X2) + ¾2 + ¹2

= 2¾2 + 2¹2 ¡ 2¹¹

= 2¾2

2 a Let X be the number of buses needed to get a correct one.

X » Geo(0:35)

i P(X 6 4) ¼ 0:821

ii E(X) =
1

p
=

1

0:35
¼ 2:86 (about 3)
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WORKED SOLUTIONS 195

b Let Y be the bus that the student will take to school.
Y » NB(3, 0:35)

i P(Y = 7) =
¡
6
2

¢
(0:35)3(0:65)4 ¼ 0:115

ii E(Y ) =
r

p
=

3

0:35
¼ 8:57

) the average number of buses until the correct one

arrives is approximately 9 buses.

iii P(Y 6 5)

= P(Y = 3 or 4 or 5)

=
¡
2
2

¢
(0:35)3 +

¡
3
2

¢
(0:35)3(0:65)

+
¡
4
2

¢
(0:35)3(0:65)2

= (0:35)3[1 + 3£ 0:65 + 6£ (0:65)2]

¼ 0:235

3 a As
P

pi = 1, 5c = 1

) c = 0:2

b ¹X =
P

pixi

= ¡3(0:2)¡ 1(0:2) + 1(0:2) + 3(0:2) + 5(0:2)

= 5(0:2)

= 1

c P(X > 1) = P(X = 3 or 5)

= 0:2 + 0:2

= 0:4

d Var(X) =
P

pix
2
i ¡ (¹X)2

= 0:2[32 + 12 + 12 + 32 + 52]¡ 12

= 0:2£ 45¡ 1

= 8

4 Let X be the number who prefer right leg kick.

X » B(n, 0:75)

a i n = 20

P(X = 14) ¼ 0:169

ii n = 20
P(X > 15) = 1¡ P(X 6 14)

¼ 0:617

b X » B(1050, 0:75)

Now np > 10 and n(1¡ p) > 10
) we can approximate X by a normal variate with

¹ = np

= 787:5

and ¾ =
p

np(1¡ p)

= 14:03

i P(70% prefer right leg)

= P(X = 0:7£ 1050)

= P(X = 735)

¼ P(734:5 < X¤ < 735:5)

¼ 0:000 026 0

ii P(no more than 25% prefer left)

= P(X > 787:5)

= 1¡ P(X 6 787)

¼ 0:514

5 a If X » B(n, p), then X has PDF

P(X = x) =
¡
n
x

¢
px(1¡ p)n¡x

where
nP

x=0

¡
n
x

¢
px(1¡ p)n¡x = [p+ (1¡ p)]n

) G(t) =
nP

x=0

tx
¡
n
x

¢
px(1¡ p)n¡x

=
nP

x=0

¡
n
x

¢
(pt)x(1¡ p)n¡x

= (pt+ (1¡ p))n

= (1¡ p+ pt)n for t = 0, 1, 2, 3, ...., n

b i G0(t) = n(1¡ p+ pt)n¡1 £ p

= np(1¡ p+ pt)n¡1

) G0(1) = np(1)n¡1 = np

) E(X) = np

ii G00(t) = n(n¡ 1)p(1¡ p+ pt)n¡2 £ p

) G00(1) = n(n¡ 1)p2

Thus, Var(X) = G00(1) +G0(1)¡ [G0(1)]2

= n(n¡ 1)p2 + np¡ n2p2

= np[(n¡ 1)p+ 1¡ np]

= np[np¡ p+ 1¡ np]

= np(1¡ p)

6 Let X denote the number of hours lost to sickness.

X » N(¹, 672)

) X » N(¹, 672

375
) fCL Theoremg

We need to find P(
¯̄
X ¡ ¹

¯̄
> 10)

= P(X ¡ ¹ > 10 or X ¡ ¹ < ¡10)

= 1¡ P(¡10 < X ¡ ¹ < 10)

= 1¡ P

0@ ¡10

67p
375

<
X ¡ ¹

67p
375

<
10

67p
375

1A
= 1¡ P(¡2:8903 < Z < 2:8903)

¼ 0:003 85

7 a Using technology, x = 12:275

sn ¼ 1:5164 (sn¡1 ¼ 1:5357)

b ¾ is unknown, so we use sn¡1 as an unbiased estimate of

it.
If X is the number of points held by an employee,

X » t(39).

95% CI for ¹ is

x¡ t®

2

¾p
n

< ¹ < x+ t®

2

¾p
n

where t®

2

¼ 1:685

Using technology, 11:8 < ¹ < 12:8

8 a As we have the same group of students, observations are not

independent.

So, the difference between means is not appropriate.

b

Student A B C D E F G H I J

Pre-test (X1) 12 13 11 14 10 16 14 13 13 12

Post-test (X2) 11 14 16 13 12 18 15 14 15 11

Difference (D) ¡1 1 5 ¡1 2 2 1 1 2 ¡1

D = X2 ¡X1

¹D = 1:1, sn¡1 ¼ 1:8529 fusing technologyg
sn¡1 ¼ 1:8529 is an unbiased estimate of ¾.

D » t(9) and the 90% confidence interval for D is

0:025 89 < D < 2:1741

IB HL OPT 2ed

Calculusmagentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-Stat-Prob\IB_HL_OPT-Stat-Prob_an\195IB_HL_OPT-Stat-Prob_an.cdr Friday, 19 April 2013 1:39:02 PM BRIAN



Z

0 025.

z®

2

-1 960 =.

0 025.

z¤

0

196 WORKED SOLUTIONS

c H0: ¹D = 0 (there is no improvement)

H1: ¹D > 0 (there is an improvement)

We perform a 1-tailed test at a 5% level with 9 df and

D » t(9).
t¤ ¼ 1:8773 and p-value ¼ 0:0466.
Since the p-value < 0:05, we reject H0 in favour of H1.

) at a 5% level of significance, there has been an

improvement.

9 (1) H0: ¹ = 68 (unchanged)

H1: ¹ < 68 (decreased)

(2) As ¾ is unknown, we use sn¡1 as an unbiased estimate of

¾.

sn¡1 =

r
n

n¡ 1
sn =

r
42

41
£ 1:732

) sn¡1 ¼ 1:753

The null distribution is t(41).

(3) The test statistic is t¤ where

t¤ =
x¡ ¹0
sn¡1p

n

=
65¡ 68
1:753p

42

¼ ¡11:09

(4) We reject H0 if the p-value < 0:05.

(5) p-value = 0

(6) ) we reject H0 in favour of H1.

(7) There is sufficient evidence at a 5% level to accept H1 that

the diet and exercise program has reduced Yarni’s resting

pulse rate.

10 (1) H0: ¹ = 7:82 (no change)

H1: ¹ 6= 7:82

(2) As ¾ is known (¾ = 1:83) we use the Z-distribution (the

null distribution).

(3) The test statistic is z¤ =
x¡ ¹0

¾p
n

) z¤ =
7:55¡ 7:82

1:83p
48

¼ ¡1:022

(4) We reject H0 if:

z¤ is in the critical region or p-value is < 0:05

(5) or p-value

= 2£ P(Z 6 ¡1:022)

¼ 0:3067

(6) z¤ does not lie in the

critical region.

) we do not reject H0.

or The p-value is not less

than 0:05.
) we do not reject

H0.

(7) There is insufficent evidence to reject H0 at a 5% level of

significance. So, we accept that there has been no change in

the colony’s mean weight at this level.

11 a By definition, ½ =
Cov(X, Y )

¾X¾Y

b If ½ = 0, then Cov(X, Y ) = 0 ffrom ag
) E(XY )¡ E(X)E(Y ) = 0

fas Cov(X, Y ) = E(XY )¡ E(X)E(Y )g
) E(XY ) = E(X)E(Y )

) X and Y are independent random variables.

c i Using technology, r ¼ 0:495 94

ii H0: ½ = 0 against H1: ½ 6= 0
The test statistic is

t¤ = r

r
n¡ 2

1¡ r2
= 0:495 94

r
9

1¡ 0:495 942

) t¤ ¼ 1:713 with º = n¡ 2 = 9

p-value = 2£ P(T > jt¤j)
= 2£ P(T > 1:713)

¼ 0:1209 which is not < 0:05

Thus, at a 5% level, we do not reject H0 in favour of

H1.
That is, we accept ½ = 0, in which case X and Y are

independent random variables.

12 a Var(X)

= Var

µ
1

n

nP
i=1

Xi

¶
=

1

n2

nP
i=1

Var(Xi)

=
1

n2
£ n¾2

=
¾2

n

b E(X)

= E

0@ nP
i=1

Xi

n

1A
=

1

n
E

µ
nP

i=1

Xi

¶
=

1

n

nP
i=1

E(Xi)

=
1

n
£ n¹

= ¹

c E(S 2
n )

= E

µ
1

n

½µ
nP

i=1

X 2
i

¶
¡ nX

2

¾¶
=

1

n

½
E

µ
nP

i=1

X 2
i

¶
¡ nE(X

2
)

¾
=

1

n

½
nP

i=1

E(X 2
i )¡ nE(X

2
)

¾
=

1

n

½
nP

i=1

(Var(Xi) + [E(Xi)]
2)¡ n(Var(X) + [E(X)]2)

¾
fsince Var(U) = E(U2)¡ [E(U)]2 for any random variable Ug

=
1

n

½
nP

i=1

(¾2 + ¹2)¡ n

µ
¾2

n
+ ¹2

¶¾
=

1

n

©
n(¾2 + ¹2)¡ ¾2 ¡ n¹2

ª
= ¾2 + ¹2 ¡ ¾2

n
¡ ¹2

= ¾2
³
1¡ 1

n

´

IB HL OPT 2ed

Calculusmagentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-Stat-Prob\IB_HL_OPT-Stat-Prob_an\196IB_HL_OPT-Stat-Prob_an.cdr Friday, 19 April 2013 10:20:43 AM BRIAN



WORKED SOLUTIONS 197

=

³
n¡ 1

n

´
¾2

6= ¾2

) S 2
n is a biased estimator of ¾2.

d E(S 2
n¡1) =

³
n

n¡ 1

´
E(S 2

n )

=
n

n¡ 1
£ n¡ 1

n
¾2

= ¾2

) S 2
n¡1 is an unbiased estimator of ¾2.

REVIEW SET B

1 a i Since
P

pi = 1,

0:3 + 0:2 + 0:2 + P(X = 6) = 1

) P(X = 6) = 0:3

ii E(X) =
P

pixi

= ¡5(0:3)¡ 1(0:2) + 3(0:2) + 6(0:3)

= 0:7

) expected return is 70 cents/game.

iii At 50 cents/game, they would on average lose 20 cents

each game. However, if they charge $1/game, they would

expect to gain 30 cents each game.

b i E(Y ) = ¡3(0:5) + 2(0:3) + 5(0:2)

= 0:1

) expected return is 10 cents/game.

ii
game 2 X + Y values

(0:2) 5 0 4 8 11

(0:3) 2 ¡3 1 5 8

(0:5) ¡3 ¡8 ¡4 0 3

¡5 ¡1 3 6 game 1

(0:3) (0:2) (0:2) (0:3)

X + Y ¡8 ¡4 ¡3 0 1

prob. 0:15 0:10 0:09 0:16 0:06

X + Y 3 4 5 8 11

prob. 0:15 0:04 0:06 0:13 0:06

For example:

P(X + Y = ¡8) = P(X = ¡5, Y = ¡3)

= 0:3£ 0:5

= 0:15

P(X + Y = ¡4) = P(X = ¡1, Y = ¡3)

= 0:2£ 0:5

= 0:1, and so on

E(X + Y )

= ¡8(0:15)¡ 4(0:10)¡ 3(0:09) + ::::+ 11(0:06)

= 0:8

or E(X + Y ) = E(X) + E(Y )

= 0:7 + 0:1

= 0:8

) expected return = 80 cents/game

iii Organiser’s gain

= 1£ (500 + 500 + 1000)

¡ 0:7£ 500¡ 0:1£ 500¡ 0:8£ 1000

= $800

2 X » B(1000, 3
5
)

a i E(X) = np

= 1000£ 3
5

= 600

ii Var(X) = np(1¡ p)

= 1000£ 3
5
£ 2

5

= 240

) ¾X =
p
240 ¼ 15:5

b P(580 6 X 6 615)

= P(X 6 615)¡ P(X 6 579)

= 0:841 47¡ 0:093 12 ftechnologyg
¼ 0:7484

c P(579:5 6 X 6 615:5) ¼ 0:7486 ftechnologyg
d If X » B(n, p) where np > 10 and n(1 ¡ p) > 10

then X » N(np, np(1¡ p))

and P(a 6 X1 6 b) where X1 is binomial

¼ P(a¡ 1
2
6 X2 6 b+ 1

2
) where X2 is normal

f“the continuity correction”g

3 If X » NB(r, p) then

P(X = x) =
¡
x¡1
r¡1

¢
pr(1¡ p)x¡r

) P(X = k + r ¡ 1) =
¡
k+r¡1¡1

r¡1

¢
pr(1¡ p)k+r¡1¡r

for k = 1, 2, 3, 4, 5, ....

=
¡
k+r¡2
r¡1

¢
pr(1¡ p)k¡1

Letting r = 1, gives

P(X = k) =
¡
k¡1
0

¢
p(1¡ p)k¡1

= (1¡ p)k¡1p

for k = 1, 2, 3, 4, 5, ....

But for X » Geo(p),

P(X = k) = p(1¡ p)k¡1 for k = 1, 2, 3, 4, ....

) NB(1, p) = Geo(p)

4 a If X » Geo(p), then X has PDF

P(X = x) = p(1¡ p)x¡1 for x = 1, 2, 3, 4, ....

) G(t) =
1P

x=1

txp(1¡ p)x¡1

=
p

1¡ p

1P
x=1

[t(1¡ p)]x

=
p

1¡ p
£ u1

1¡ r
provided jrj < 1

=
p

1¡ p
£ t(1¡ p)

1¡ t(1¡ p)
provided jt(1¡ p)j < 1

=
pt

1¡ t(1¡ p)
provided jtj < 1

1¡ p

G0(t) =
p [1¡ t(1¡ p)]¡ pt(¡1 + p)

[1¡ t(1¡ p)]2

=
p

(1¡ t+ pt)2

b E(X) = G0(1)

=
p

[1¡ 1 + p]2

=
p

p2

=
1

p
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198 WORKED SOLUTIONS

G0(t) = p(1¡ t+ pt)¡2

G00(t) = ¡2p(1¡ t+ pt)¡3 £ (¡1 + p)

= ¡2p(1¡ t+ pt)¡3(p¡ 1)

) G00(1) = ¡2p(p)¡3(p¡ 1)

=
2(1¡ p)

p2

Now Var(X) = G00(1) +G0(1)¡
£
G0(1)

¤ 2
=

2(1¡ p)

p2
+

1

p
¡ 1

p2

=
2¡ 2p+ p¡ 1

p2

=
1¡ p

p2

5 a, d f(x) = 0:8e¡0:8x, x > 0

b i E(X) =
1

¸

=
1

0:8

= 1:25

ii Var(X) =
1

¸2

¼ 1:56

c We need to find m such thatZ m

0

¸e¡¸x dx = 1
2

) ¸

h
1

¡¸
e¡¸x

im
0

= 1
2

) ¡
£
e¡¸m ¡ 1

¤
= 1

2

) ¡e¡¸m + 1 = 1
2

) e¡¸m = 1
2

) e¸m = 2

) ¸m = ln 2

) m =
ln 2

¸

d m =
ln 2

0:8
¼ 0:866

e F (X) = P(X 6 x)

=

Z x

0

¸e¡¸t dt

= ¸

h
1

¡¸
e¡¸t

ix
0

= ¡
¡
e¡¸x ¡ e0

¢
= 1¡ e¡¸x

f P(X > 1:3) = 1¡ P(X 6 1:3)

= 1¡
¡
1¡ e¡0:8£1:3

¢
= e¡1:04

¼ 0:353

6 Let X be the volume of a bottle in mL. X » N(376, 1:842)

Then X is the average volume of each sample of 12.

X » N

³
376, 1:842

12

´
a P(X < 373) ¼ 0:0515

) about 5:15% will have a volume less than 373 mL.

b P(X < 375) ¼ 0:0299

) about 3% of all packs of 12 will have an average contents

less than 375 mL.

c From a and b there is a smaller chance of picking a 12-pack

that does not meet the rules than that for an individual bottle.
Hence, would prefer method II.

d Let X » N(¹, 1:842)

We want P(X < 375) = 0:01

) P

0@X ¡ ¹

1:84p
12

<
375¡ ¹

1:84p
12

1A = 0:01

) P

0@Z <
375¡ ¹

1:84p
12

1A = 0:01

Thus
(375¡ ¹)

p
12

1:84
¼ ¡2:3263

) 375¡ ¹ ¼ ¡1:235 67

) ¹ ¼ 376:23 ::::

So, need to set it at ¹ = 377 mL.

7 a As ¾2 = 151:4 g2, ¾ ¼ 12:304 is known.

The 95% CI for ¹ is:

x¡ z0:025
¾p
n

6 ¹ 6 x+ z0:025
¾p
n

Using technology, 594:5 6 ¹ 6 598:9 which means that

we are 95% confident that the population lies within this

region.

b As 600 does not lie in this interval, the sample data does

not support the manufacturer’s claim. It seems that the

machine which fills the packets should be adjusted to add

more contents to each packet.

c From the 95% CI in a,

¡z0:025
¾p
n

6 ¹¡ x 6 z0:025
¾p
n

) j¹¡ xj 6 z0:025
¾p
n

So we require z0:025
¾p
n

= 2

Thus 1:960£
p
151:4p
n

= 2

)

r
151:4

n
= 1:0204

y

x

0 8.

1 2 3 4
median mean
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WORKED SOLUTIONS 199

) n =
151:4

1:02042

) n = 145:406 ::::

) a sample of 146 should be used.

8 (1) H0: ¹ = E438 000

H1: ¹ 6= E438 000

(2) The null distribution is t(29) as n = 30.

sn¡1 =

r
n

n¡ 1
sn =

r
30

29
£ 23 500 = E23 902

is an unbiased estimate of ¾.

(3) The test statistic is

t¤ =
x¡ ¹0
sn¡1p

n

=
(x¡ 438 000)

p
30

23 902

(4) We reject H0 if t¤ lies in the critical region.

¡2:462 6 t¤ 6 2:462

) ¡2:462 6
(x¡ 438 000)

p
30

23 902
6 2:462

) ¡10 744 6 x¡ 438 000 6 10 744

) 427 000 < x < 448 500

So, the real estate agent’s claim would be supported if x lies

between E427 000 and E448 500.

9 a Cov(X, Y )

= E ((X ¡ ¹X)(Y ¡ ¹Y ))

= E(XY ¡ ¹Y X ¡ ¹XY + ¹X¹Y )

= E(XY )¡ ¹Y E(X)¡ ¹X E(Y ) + ¹X¹Y

= E(XY )¡ ¹Y ¹X ¡ ¹X¹Y + ¹X¹Y

= E(XY )¡ E(X)E(Y )

b If X and Y are independent then

Cov(X, Y ) = 0

) E(XY )¡ E(X)E(Y ) = 0 ffrom ag
) E(XY ) = E(X)E(Y )

c Cov(X, X ¡ Y )

= E (X(X ¡ Y ))¡ E(X)E(X ¡ Y )

= E(X2 ¡XY )¡ E(X) [E(X)¡ E(Y )]

= E(X2)¡ E(XY )¡ [E(X)]2 + E(X)E(Y )

= E(X2)¡ [E(X)]2 ¡ E(X)E(Y ) + E(X)E(Y )

fE(XY ) = E(X)E(Y ) from bg
= Var(X)

10 a X » N(¹, 3:712)

) X » N

³
¹, 3:712

13

´
fCentral Limit Theoremg

b If X lies in the critical region, we reject H0 in favour of

accepting H1.

c ® = P(Type I error)

= P(rejecting H0 j H0 is true)

= P

³
X < 498 or X > 502 j X » N

³
500, 3:712

13

´´
= 1¡ P

³
498 6 X 6 502 j X » N

³
500, 3:712

13

´´
¼ 0:0519

d P(Type II error)

= P(accepting H0 j H1 is true)

= P

³
498 6 X 6 502 j X »

³
498:4, 3:712

13

´´
= 0:651

11 (1) H0: ¹ = 106:3

H1: ¹ > 106:3

(2) As ¾ = 12:41, the null distribution is Z.

(3) The test statistic is z¤ where

z¤ =
x¡ ¹0

¾p
n

=
110:1¡ 106:3

12:41p
65

¼ 2:469

(4) We reject H0 if:

z¤ lies in the critical

region

or the p-value is < 0:01

(5) or p-value

= 0:006 78

which is < 0:01

(6) We reject H0. or We reject H0.

(7) There is sufficient evidence at a 1% level of significance to

suggest that the mean weight of a tomato has increased.

12 a E(T1) =
3
10

E(X1) +
7
10

E(X2)

= 3
10

¹+ 7
10

¹

= ¹

) T1 is an unbiased estimator of ¹.

b E(T2) =
3
5

E(X1) +
2
5

E(X2)

= 3
5
¹+ 2

5
¹

= ¹

) T2 is an unbiased estimator of ¹.

c i Lucy’s estimate =
3(2:6) + 7(5:3)

10
= 4:49

ii Beth’s estimate =
3(2:6) + 2(5:3)

5
= 3:68

iii Var(T1) =
9

100
Var(X1) +

49
100

Var(X2)

= 9
100

¾2 + 49
100

¾2

= 58
100

¾2

T

0 01.0 01.

0
t = 2.4620.01-t = -2.4620.01

Z

0 01.

0
2.362

z¤
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200 WORKED SOLUTIONS

Var(T2) =
9
25

Var(X1) +
4
25

Var(X2)

= 9
25

¾2 + 4
25

¾2

= 13
25

¾2

= 52
100

¾2 which is < Var(T1)

) Eve is not correct.

T2 is a more efficient estimator than T1.

d E(T3) =
a

c
E(X1) +

b

c
E(X2)

=
a

c
¹+

b

c
¹

=

³
a+ b

c

´
¹

= ¹

) a+ b = c

REVIEW SET C

1 a Y = 2X3 ¡ 2X2 ¡X1

i E(Y ) = 2E(X3)¡ 2E(X2)¡ E(X1)

= 2a¡ 2(3)¡ (2)

= 2a¡ 8

ii Var(Y )

= 22Var(X3) + (¡2)2Var(X2) + (¡1)2Var(X1)

= 4b+ 4
¡

1
16

¢
+ 1

8

= 4b+ 1
4
+ 1

8

b If E(Y ) = 0, 2a¡ 8 = 0

) a = 4

If Var(Y ) = 1, 4b+ 3
8
= 1

) 4b = 5
8

) b = 5
32

c Y is a linear combination of normal variables. Consequently

Y is Normal.
So, Y = N(0, 1).

d P(X3 > 8b) = P(X3 > 1:25)

¼ 0:106

2 P(a ‘six’) = 1
6

Let X be the number of rolls needed to obtain a ‘six’.

) X » Geo
¡
1
6

¢
and ¹X =

1

p
=

1

1
6

= 6

So, on average a player takes 6 rolls to win E10.

As Pierre wants to make E2/game, he must charge E12 over the

6 rolls, which is E2 per roll.

3 a X » Po(m) where m is the unknown mean number of

errors per page.

b P(X = x) =
mxe¡m

x!
for x = 0, 1, 2, 3, ....

i P(X = 1) =
me¡m

1!
= q(¡ ln q) = ¡q ln q

ii P(X > 1) = 1¡ P(X 6 1)

= 1¡ [P(X = 0) + P(X = 1)]

= 1¡ q + q ln q

c i Let Y denote returns based on numbers of errors.

y $10 $1 ¡$8

P(Y = y) q ¡q ln q 1¡ q + q ln q

ii E(Y ) =
P

yipi

= $ [10q ¡ q ln q ¡ 8(1¡ q + q ln q)]

= $[18q ¡ 9q ln q ¡ 8]

iii To receive a bonus (positive) we require

18q ¡ 9q ln q ¡ 8 > 0.

First we solve 18q ¡ 9q ln q ¡ 8 = 0

) q ¼ 0:268

For q = 0:267, f(q) ¼ ¡0:0208 < 0

For q = 0:268, f(q) ¼ 0:000 045 1

which is > 0

) required q = 0:268

4 a We know that

Z 1

0

f(x) dx = 1 .... (1)

for a well-defined pdf, and that

E(X) =

Z 1

0

x f(x) dx = 0:7 .... (2)

From (1),

Z 1

0

(ax3 + bx2) dx = 1

)

·
ax4

4
+

bx3

3

¸ 1
0

= 1

)
a

4
+

b

3
¡ 0 = 1

) 3a+ 4b = 12 .... (3)

From (2),

Z 1

0

(ax4 + bx3) dx = 0:7

)

·
ax5

5
+

bx4

4

¸ 1
0

= 7
10

)
a

5
+

b

4
¡ 0 = 7

10

) 4a+ 5b = 14 .... (4)

Solving (3) and (4) simultaneously gives a = ¡4, b = 6.

b P(runs out of petrol) = P(X > 0:95)

=

Z 1

0:95

(¡4x3 + 6x2) dx

¼ 0:0998

) the service station runs out of petrol about 10% of the

time.

5 a As ¹ =
pr

1¡ p
, ¹¡ ¹p = pr

) ¹ = pr + ¹p

) ¹ = p(¹+ r)

) p =
¹

¹+ r
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WORKED SOLUTIONS 201

b Hence, G(t) =

0@1¡ ¹

¹+r

1¡ ¹t

¹+r

1Ar

=

µ
¹+ r ¡ ¹

¹+ r ¡ ¹t

¶r

=

µ
r

¹+ r ¡ ¹t

¶r

=

Ã
1

1 + ¹

r
(1¡ t)

! r

=
1³

1 +
¹(1¡t)

r

´r
c As r ! 1,

µ
1 +

¹(1¡ t)

r

¶r

! e¹(1¡t)

f lim
n!1

³
1 +

a

n

´n

! ea, ¹ and t fixedg

) lim
r!1

G(t) = e¡¹(1¡t)

= e¹(t¡1)

which is the PGF for the Poisson variable with mean ¹.

d Po(m) = lim
r!1

NB

³
r,

m

m+ r

´

6 a X » N(63:4, 40:1)

P(X 6 60) ¼ 0:296

About 29:6% of sausages produced weigh 6 60 grams.

b W » N
¡
63:4, 40:1

10

¢
fCL Theoremg

c P(W 6 60) ¼ 0:0448

In approximately 4:48% of all samples of 10 sausages, the

mean weight in the sample will be 6 60 g.

d We require P(W 6 60) = 0:01

P

0@W ¡ 63:4q
40:1
n

6
60¡ 63:4q

40:1
n

1A = 0:01

) P

0@Z 6
¡3:4q

40:1
n

1A = 0:01

)
¡3:4

p
np

40:1
¼ ¡2:3263

)
p
n ¼ 4:333

) n ¼ 18:77

) samples of size 19 are needed.

7 a As ¾ is unknown, the t-distribution replaces the

Z-distribution for the CI and sn¡1 is used as an unbiased

estimate of ¾.
Thus, the 95% CI for ¹ is:

x¡ t(0:025, n¡ 1)
sn¡1p

n
6 ¹ 6 x+ t(0:025, n¡ 1)

sn¡1p
n

b Adding the two outer boundary limits gives 2x.

) 2x = 139:91 + 147:49 = 287:4

) x = 143:7

c In order to find n we would need to solve

x+ t(0:025; n¡ 1)
sn¡1p

n
= 147:49

)
t(0:025, n¡ 1)sn¡1p

n
= 3:79

)

t(0:025, n¡ 1)

q
n

n¡1
sn

p
n

= 3:79

)
t(0:025, n¡ 1)£ 11:2p

n¡ 1
= 3:79

) t(0:025, n¡ 1) = 0:3384
p
n¡ 1

which is not solvable algebraically as n must be known for a

t calculation.

d n¡ 1 =

·
t(0:025, n¡ 1)

0:3384

¸ 2
) n =

·
t(0:025, n¡ 1)

0:3384

¸ 2
+ 1

If n = 33, n ¼ 37:23

If n = 34, n ¼ 37:14

If n = 35, n ¼ 35:06 X

If n = 36, n ¼ 36:90

Thus n = 35.

8 Let X1 be the number of fish caught before the course,

and X2 be the number of fish caught after the course.

We consider D = X2 ¡X1

a H0: ¹D = 0 against

H1: ¹D > 0 (the course was effective)

D values are: 12, 9, 18, ¡3, ¡9, 4, 0, 10, 4

where d = 5 and sn¡1 ¼ 8:2614
As ¾ is unknown, we use sn¡1 as an unbiased estimate of

¾.

The test statistic is t¤ =
d¡ ¹0

¾p
n

=
5¡ 0
8:2614p

9

) t¤ ¼ 1:816

and p-value ¼ 0:0535

which is > 0:05

The decision:

² as p-value > 0:05 or

² as t¤ does not lie in the rejection region (t > 1:860)

then we do not reject H0 and are subject to making a

Type II error, that is, accepting H0 when it is in fact

false.

Note: We do not have enough information to determine the

probability of making this type of error.

b A 90% confidence interval for the mean difference is
]¡0:121, 10:121[ and as the null hypothesis value of

¹D = 0 is within the CI, then at a 5% level, this is consistent

with the acceptance of H0.
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202 WORKED SOLUTIONS

9 (1) H0: ¹ = 200 and H1: ¹ < 200

(2) The null distribution is Z.

(3) The test statistic is z¤ where

z¤ =
x¡ ¹0

¾p
n

=
196:4¡ 200

11:36p
35

) z¤ ¼ ¡1:875

(4) We reject H0 if z¤ lies in the critical region.

(5)

(6) Since z¤ does not lie in the critical region we do not reject

H0.

(7) There is insufficient evidence to reject H0, that is, there is

insufficient evidence to suggest that her present mean has

fallen to less than 200.

10 a X is a discrete random variable with values 0, 1, 2, 3, 4, ....
) S is also a discrete random variable and the critical region

is f0 6 S 6 33g [ fS > 57g.

b A Type I error is rejecting H0 when H0 is in fact true.

This means, deciding that m 6= 3 when in fact m = 3

(and X » Po(3)).

P(Type I error)

= P(S is in the critical region j S » Po(15£ 3))

= P(0 6 S 6 33 or S > 57 j S » Po(45))

= P(S 6 33 j S » Po(45))

+1¡ P(S 6 56 j S » Po(45))

¼ 0:038 339 + 1¡ 0:952 745

¼ 0:0856

c A Type II error is accepting H0 when H0 is in fact false.

This means accepting m = 3 when in fact m = 3:4.

P(Type II error)

= P(34 6 S 6 56 j S » Po(15£ 3:4))

= P(S 6 56 j S » Po(51))¡ P(S 6 33 j S » Po(51))

¼ 0:782 27¡ 0:004 79

¼ 0:777

11 H0: ½ = 0 (X and Y are independent) against

H1: ½ 6= 0

n = 27 and so º = 27¡ 2 = 25

We require the p-value to be > 0:05 for H0 acceptance.

) 2£ P(T > jt¤j) > 0:05

) P(T > jt¤j) > 0:025

) P(T 6 jt¤j) < 0:975

) t¤ ¼ 2:060 ftechnologyg

But t¤ = r

r
n¡ 2

1¡ r2

) we accept H0 when r

r
25

1¡ r2
< 2:06

)
25r2

1¡ r2
< 4:2436

Since 1¡ r2 > 0,

) 25r2 < 4:2436¡ 4:2436r2

) 29:2436r2 < 4:2436

) r2 < 0:145 11

)
p
r2 < 0:380 93 ::::

) jrj < 0:380 93 ::::

Thus for X, Y independence, the greatest value of jrj is 0:3809

(to 4 s.f.).

12 a Using S 2
n¡1 =

n

n¡ 1
S 2
n

Sample A gives

S 2
n¡1 = 8

7
£ 4:2 = 4:8

Sample B gives

S 2
n¡1 = 22

21
£ 5:1 ¼ 5:34

So, 4:8 and 5:34 are unbiased estimates of ¾2.

b i t1 =
8(4:2) + 22(5:1)

30
= 4:86

ii E(T1) = E
¡

8
30

S 2
A + 22

30
S 2
B

¢
= 8

30
E(S 2

A ) + 22
30

E(S 2
B )

= 8
30

£ 7
8
¾2 + 22

30
£ 21

22
¾2

= 28
30

¾2

6= ¾2

) T1 is a biased estimator of ¾2, and so t1 is a biased

estimate of ¾2.

c E(T2) =
a

c
E(S 2

A ) +
b

c
E(S 2

B )

=
a

c
£ 7

8
¾2 +

b

c
£ 21

22
¾2

=

³
7a

8c
+

21b

22c

´
¾2

which is ¾2 if
7a

8c
+

21b

22c
= 1

) 77a+ 84b = 88c

REVIEW SET D

1 Let S be the volume of a small bottle and let

L be the volume of a large bottle.

) S » N(338, 32) and L » N(1010, 122)

a Consider U = L¡ (S1 + S2 + S3)

= L¡ S1 ¡ S2 ¡ S3

) E(U) = E(L)¡ E(S1)¡ E(S2)¡ E(S3)

= 1010¡ 3£ 338

= ¡4 mL

and Var(U) = Var(L) + Var(S1) + Var(S2) + Var(S3)

= 122 + 3£ 32

= 171 mL2

P(L > S1 + S2 + S3)

= P(L¡ S1 ¡ S2 ¡ S3 > 0)

= P(U > 0) where U » N(¡4, 171)

¼ 0:380

Z0
-z = -2.0540.02

z¤
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WORKED SOLUTIONS 203

b Consider V = L¡ 3S
) E(V ) = E(L)¡ 3E(S)

= 1010¡ 3£ 338

= ¡4

and Var(V ) = Var(L) + 9Var(S)

= 122 + 9£ 32

= 225

) V » N(¡4, 225)

P(L > 3S) = P(L¡ 3S > 0)

= P(V > 0)

¼ 0:395

2 a Let X be the number of patients arriving between 9:00 am

and 9:45 am.

E(X) = 3
4

of 14 = 10:5

X » Po(10:5)

) P(X = 5) =
10:55e¡10:5

5!
¼ 0:0293

b Let Y be the number of patients arriving between 10:00 am

and 10:30 am.

E(Y ) = 1
2

of 14 = 7

Y » Po(7)

) P(Y < 7) = P(Y 6 6)

¼ 0:450

3 a As E(X) = np = 8 and

Var(X) = np(1¡ p) = 6,

8(1¡ p) = 6

) 1¡ p = 3
4

) p = 1
4

Thus n( 1
4
) = 8 ) n = 32

b i X » B(32, 1
4
)

) P(X > 4) = 1¡ P(X 6 3)

¼ 0:975

ii As n > 30, we can use the Central Limit Theorem.

X » N(8, 6
32

)

) P(7:9 6 X 6 8:1) ¼ 0:406

4 As f(x) is the normal PDF,Z 1

¡1

1p
2¼¾

e
¡ 1

2

¡
x¡¹

¾

¢2
dx = 1

)

Z 1

¡1
e
¡ 1

2

¡
x¡¹

¾

¢2
dx =

p
2¼¾ f¾ is fixedg

Letting ¹ = 9 and ¾ = 2 we getZ 1

¡1
e
¡ 1

2

¡
x¡9

2

¢2
dx = 2

p
2¼

)

Z 1

¡1
e
¡ 1

8
(x¡9)2

dx = 2
p
2¼

5 G(t) = (1¡ ¯ ln t)¡®¡1, ® and ¯ are parameters

a G0(t) = (¡®¡ 1)(1¡ ¯ ln t)¡®¡2 £¡¯

³
1

t

´
= (®+ 1)¯

·
(1¡ ¯ ln t)¡®¡2

t

¸

When t = 1, ln t = 0

) ¹ = G0(1) = (®+ 1)¯

h
1

1

i
= (®+ 1)¯

b G00(t)

= (®+ 1)¯

·
(¡®¡2)(1¡¯ ln t)¡®¡3£¡¯

t
¡(1¡¯ ln t)¡®¡2£1

t2

¸
fquotient ruleg

) G00(1) = (®+ 1)¯

·
¯(®+ 2)¡ 1

1

¸
and Var(X) = G00(1) +G0(1)¡

£
G0(1)

¤ 2
= (®+ 1)¯2(®+ 2)¡ (®+ 1)¯

+(®+ 1)¯ ¡ (®+ 1)2¯2

= (®+ 1)¯2[®+ 2¡ ®¡ 1]

= (®+ 1)¯2 £ 1

= (®+ 1)¯2

6 a s 2
n =

nP
i=1

(xi ¡ x)2

n
=

230

15
¼ 15:33

b sn¡1 =

r
n

n¡ 1
sn ¼ 4:0532 is an unbiased estimate

of ¾.

c i A CI for ¹ is 124:94 < ¹ < 129:05
and x for this sample is the midpoint of the CI.

) x =
124:94 + 129:05

2
= 126:995

As ¾ is unknown (had to be estimated), we have a

t-distribution with º = 15¡ 1 = 14, that is,

t » t(14).

A 95% CI is 124:75 < ¹ < 129:24

ii t¤ =
jx¡ ¹j

¾p
n

¼ j126:995¡ 129:05j
4:0532p

15

) t¤ ¼ 1:9636 ::::

and P(T < 1:9636 ::::) ¼ 0:965 12

) ® ¼ 2£ 0:3488

) ® ¼ 6:98

) we have a 7% confidence level.

7 a B, as:

² A is closer to normality

² A’s standard deviation is much less than 9:21

b ¹
X

= ¹ = 11:4

¾ 2

X
=

¾2

n
=

9:212

9
¼ 9:425

c P(X > 12) ¼ 0:423

T0

0 03488.

0 96512.

1 9636.
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204 WORKED SOLUTIONS

d Firstly we need to consider

P(¹
Y

¡ 3 6 Y 6 ¹
Y

+ 3) = 0:95

) P

µ
¹
Y

¡ 3¡ ¹
Y

¾
Y

6
Y ¡ ¹

Y

¾
Y

6
¹
Y

+ 3¡ ¹
Y

¾
Y

¶
= 0:95

) P

µ
¡3

¾
Y

6 Z 6
3

¾
Y

¶
= 0:95

) P

µ
Z 6 ¡ 3

¾
Y

¶
= 0:025

) ¡ 3

¾
Y

¼ ¡1:960

) ¾
Y

¼ 1:531

But ¾
Y

=
¾Yp
n

) n =
¾ 2
Y

¾ 2
Y

) n ¼ 36:2

So, n must be at least 37.

8 (1) H0: ¹ = 546 (there is no change)

H1: ¹ > 546 (there is an increase)

(2) As ¾2 is unknown we use the t-distribution with º = 49.

(3) The test statistic is t¤ where

t¤ =
x¡ ¹0
sn¡1p

n

=
563¡ 546

59:049p
50

fsn¡1 =

r
n

n¡ 1
sn

=
p

50
49

£
p
3417

¼ 59:049g
) t¤ ¼ 2:0357

(4) We reject H0 if:

t¤ is in the critical region or the p-value is < 0:05

(5) or p-value

= P(T > 2:0357)

¼ 0:0236

(6) As t¤ lies in the critical

region, we reject H0.

or As the p-value is

< 0:05, we reject H0.

(7) There is sufficient evidence to reject H0 in favour of H1. We

accept that the new brand has longer life at a 5% significance

level.

9 a As X » Geo(0:25), S » NB(12, 0:25)

b H0 should be accepted if 32 6 S 6 74 fS > 12g.

c ® = P(Type I error)

= P(rejecting H0 j H0 is in fact true)

= P(S 6 31 or S > 75 j S » NB(12, 0:25))

= P(S 6 31 j S » NB(12, 0:25))

+1¡ P(S 6 74 j S » NB(12, 0:25))

=
31P

i=12

¡
i¡1
11

¢
(0:25)12(0:75)i¡12

+1¡
74P

i=12

¡
i¡1
11

¢
(0:25)12(0:75)i¡12

¼ 0:064 426 + 1¡ 0:974 523

¼ 0:089 90

Thus ® ¼ 0:9

d P(Type II error)

= P(accepting H0 j H1 is true)

= P(32 6 S 6 74 j S » NB(12, 0:2))

= P(S 6 74 j S » NB(12, 0:2))

¡ P(S 6 31 j S » NB(12, 0:2))

=
74P

i=12

¡
i¡1
11

¢
(0:2)12(0:8)i¡12

¡
31P

i=12

¡
i¡1
11

¢
(0:2)12(0:8)i¡12

¼ 0:830 84¡ 0:012 72

¼ 0:818

) power ¼ 1¡ 0:818 ¼ 0:182 or 18:2%

10 a A Type I error would result if it was determined that

Quickchick is supplying underweight chickens when they are

in fact not.

b A Type II error would result if Quickchick is supplying

underweight chickens when it is determined that they are not.

11 a

b r ¼ ¡0:9462 ftechnologyg
c The correlation is strong and negative.

d Yes, as the distance from the target does affect the number of

hits.

e y = ¡0:1134x+ 11:27 hits

f When x = 50, y = ¡0:1134£ 50 + 11:27

= 5:6

So, on average we expect about 5:6 hits from a 50 m distance,

for every 10 arrows shot.

) for 100 arrows we predict 5:6£ 10 = 56 hits.

Z

0 025.

¡3

¾
Y

3

¾
Y

0 95.0 025.

T
0

0 05.

t 1 6770.05 .¼

t¤ 10 20 30 40 50 60 70 80

2

4

6

8

10
y

x
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WORKED SOLUTIONS 205

g No, as 100 m is outside the data set and so any calculation

would be unreliable.

h x ¼ 7:894y + 93:68 metres

12 a E(T1) =
2
3

E(X1) +
1
3

E(X2)

= 2
3
¹+ 1

3
¹

= ¹

E(T2) = aE(X1) + (1¡ a)E(X2)

= a¹+ (1¡ a)¹

= a¹+ ¹¡ a¹

= ¹

) T1 and T2 are both unbiased estimators of ¹.

b Var(T1) =
4
9

Var(X1) +
1
9

Var(X2)

= 4
9
¾2 + 1

9
¾2

= 5
9
¾2

Var(T2) = a2 Var(X1) + (1¡ a)2 Var(X2)

= a2¾2 + (1¡ a)2¾2

= (2a2 ¡ 2a+ 1)¾2

c If T2 is a more efficient estimator than T1

Var(T2) < Var(T1)

) 2a2 ¡ 2a+ 1 < 5
9

) a2 ¡ a+ 2
9
< 0

) (a¡ 2
3
)(a¡ 1

3
) < 0

) 1
3
< a < 2

3
or a 2 ] 1

3
, 2
3
[

d Var(T2) is a minimum when 2a2 ¡ 2a + 1 = A is a

minimum.
dA

da
= 4a¡ 2 which is 0 when a = 1

2

Sign diagram:

) a minimum when a = 1
2

.

13 a E(U) = 3E(X)¡ 5E(Y )

= 3¹X ¡ 5¹Y

and Var(U) = 9Var(X) + 25Var(Y )

= 9¾ 2
X + 25¾ 2

Y

b E(aS 2
X + bS 2

Y )

= aE(S 2
X) + b(S 2

Y )

= a¾ 2
X + b¾ 2

Y

= 9¾ 2
X + 25¾ 2

Y

) a = 9 and b = 25

Qe We

- ++

0 1

- +
Qw

0 1
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alternative hypothesis 100
Bernoulli distribution 26, 37, 56
Bernoulli random variable 26
bias 68
biased estimate 83, 86
biased estimator 83, 86
binomial distribution 27, 37, 48, 56, 60
binomial formula 52
binomial random variable 27
binomial series 52
bivariate normal distribution 139
bivariate statistics 124
causation 124
Central Limit Theorem 71, 90
confidence interval 66, 90
confidence level 90, 92, 93
continuous exponential random variable 44, 47
continuous normal random variable 20, 47
continuous random variable 9, 42
continuous uniform distribution 43, 47
continuous uniform random variable 43, 47
correction for continuity 48
correlation 124
covariance 131, 137
critical region 103, 108
critical value 103, 108
cumulative distribution function 9, 42
degrees of freedom 86, 94, 142
discrete random variable 9, 26
discrete uniform distribution 26, 37, 56, 60
discrete uniform random variable 26
estimate 82
estimator 82
expectation 10
expected value 10
exponential distribution 44, 47
exponential random variable 44, 47
exponential series 52
finite geometric series 52
geometric discrete random variable 29
geometric distribution 29, 37, 56, 60
hypotheses 100
hypothesis tests 100, 106, 142
independent random variables 17, 20, 61,

62, 132, 133
infinite geometric series 52
joint probability distribution 124, 139
level of significance 103
line of regression 135
linear correlation 125
linear transformation 14
matched pairs 98, 112
mean 10, 36, 37, 42, 58, 60, 66

INDEX
mean line 126, 131
mean point 126, 131
method of least squares 135
modal value 30
negative binomial distribution 31, 37, 56, 60
negative binomial random variable 31
negative linear correlation 125, 128
normal distribution 20, 47
normal random variable 20, 47
null distribution 102
null hypothesis 100
one-tailed test 103
paired data 98
parameter 66
perfect linear correlation 125, 133
Poisson distribution 33, 37, 56, 60
Poisson random variable 33
population proportion 79
positive linear correlation 125, 128
power of a test 115
probability density function 9
probability distribution function 9, 42
probability generating function 52
probability mass function 9
product moment correlation coefficient 126, 132
proportion 79
p-value 104
random error 68
random sampling 66
random variable 9
regression coefficient 135
regression line 135
sample error 73
sample mean 70, 85
sample proportion 79
sample size 73
sample variance 85
sampling distribution 66, 70, 83
sampling error 73
scatter diagram 124
standard deviation 66
standard error 73
standard normal distribution 14
standard normal random variable 14, 47
standardised variable 14
statistic 66
statistical error 68
statistical hypothesis 100
Student's t-distribution 93, 142
systematic error 68
t-distribution 93
test statistic 102, 108
two-tailed test 102, 108
Type I error 101, 114, 118
Type II error 101, 114, 118
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INDEX 207

unbiased estimate 83, 86
unbiased estimator 83, 86
uncorrelated 125, 127
uniform distribution (continuous) 43, 47
uniform distribution (discrete) 26, 37, 56, 60
variance 13, 36, 37, 42, 58, 60
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First edition - 2015 second reprint

ERRATA

MATHEMATICS FOR THE INTERNATIONAL STUDENT

MATHEMATICS HL (Option): Statistics and Probability

page 97 should read:EXERCISE G.1 Question ,9 b

The following errata were made on 24/May/2016

page 92 diagram at bottom of page:OTHER CONFIDENCE INTERVALS FOR u,

The following errata were made on 14/Nov/2016

9 9.5 10 10.5 11

`x= 10

n = 20
n = 50
n = 100
n = 200

For various values of n we have:

n Confidence interval

20 9:123 6 ¹ 6 10:877

50 9:446 6 ¹ 6 10:554

100 9:608 6 ¹ 6 10:392

200 9:723 6 ¹ 6 10:277

6

page 203 last line of solution should read:Worked Solutions REVIEW SET D ,6 c ii

c ii ) we have a 93% confidence level.

e As ¹ ¼ ¾2, n > 50 and p 6 0:1 a Poisson distribution

could be used to approximate the binomial distribution where

X »
i P(X 6 4) ¼
ii P(X > 6) = 1¡ P(X 6 5)

8

Po(9:56).

0:0388

¼ 0:914

The following erratum was made on 18/Sep/2017

page 167 should read:Worked Solutions EXERCISE B.4 ,8 e

9 A sample of 60 yabbies was taken from a dam. The sample mean

weight of the yabbies was 84:6 grams, and the sample standard

deviation was 16:8 grams.

a For this yabbie population, find:

i the 95% confidence interval for the population mean

ii the 99% confidence interval for the population mean.

b Suppose the population standard deviation ¾ = 16:94 g.

What sample size is needed to be 95% confident that the

sample mean differs from the population mean by less than

5 g?



page 188 should read:Worked Solutions EXERCISE ,H.6 1 b

1 a H0: The die is fair for rolling a ‘4’, so p = 1

4

H1: The die is unfair, so p 6= 1

4

b i A Type I error is rejecting H0 when it is true. This means

deciding it is biased when it is in fact fair.

ii P(Type I error)

= P(Reject H0 j H0 is true)

= P(X 6 61 or X > 89 j p = 1

4
)

where X » B(300, 1

4
)

= 1¡ P(62 6 X 6 88) with X » B(300, 1

4
)

= 1¡ [P(X 6 88)¡ P(X 6 61)]

iii

¼ 1¡ 0:962 26 + 0:033 785

¼ 0:0715

The test is about the 7:15% level.

9 b The 95% confidence interval for ¹ is

) 84:6¡ 1:96
¾

p
n

6 ¹ 6 84:6 + 1:96
¾

p
n

page 182 should read:Worked Solutions EXERCISE ,G.1 9 b

) ¡1:96
¾

p
n

6 ¹¡ 84:6 6 1:96
¾

p
n

Thus 1:96£ 16:94
p
n

< 5

)
p
n >

1:96 £ 16:94

5

) n > 44:10

) a sample of 45 or more is needed.

One-tailed (right) test One-tailed (left) test Two-tailed test

¯ ¯

test distribution true distribution true distribution test distribution

¯

test distribution true distribution

page 115 should not have the second equation in the :SECTION H THE PROBABILITY OF ERROR, Two-tailed test

X¹a¹
0

X¹a ¹
0

X¹a¹
0

¹
0

¡ z®

2

¾p
n

¹
0

+ z®

2

¾p
n

+¹
0

¾p
n®z -¹

0

¾p
n®z

¯ = P(X 6 ¹
0

+ z®
¾p
n

)

where X » N(¹
a
,
¾2

n
)

¯ = P(X > ¹
0

¡ z®
¾p
n

)

where X » N(¹
a
,
¾2

n
)

¯=P(¹
0
¡z

®

2

¾p
n
6X6¹

0
+z

®

2

¾p
n
)

where X » N(¹
a
,
¾2

n
)



First edition - 2013 initial print

ERRATA

MATHEMATICS FOR THE INTERNATIONAL STUDENT

MATHEMATICS HL (Option): Statistics and Probability

1 d Find P(Y > 8b).

page 151 should read:REVIEW SET C Question ,1 d

7 In order to estimate the copper content of a potential mine, drill core samples are used. All of

the drill core is crushed and well mixed before samples are removed.

Suppose X is the copper content in grams per kilogram of core, and that X has mean ¹ = 11:4
and ¾ = 9:21.

page 154 should say that is normally distributed:REVIEW SET D Question , X1 d

page 130 should read:EXERCISE I.1 Questions ,6 b cand

6 b Let u = 2x + 1 and v = 3y ¡ 1.

i List the data (u, v) in a table. ii Calculate r for this data.

c Let u = ¡2x + 1 and v = 3y ¡ 1.

i List the data (u, v) in a table. ii Calculate r for this data.

The following errata were made on or before 13/Jul/2015

page 167 should read:Worked Solutions EXERCISE ,B.4 5

5 A X » Po(6). P(X = 3) ¼ 0:0892

B X » Po(1). P(X = 1) ¼ 0:3679

C X » Po(24).

As B has the highest probability it is the most likely to occur.

P(X 6 16) ¼ 0:0563

4 a We require

Z
k

0

(6¡ 18x) dx = 1

)
£
6x¡ 9x2

¤ k
0
= 1

) 6k ¡ 9k2 = 1

) 9k2 ¡ 6k + 1 = 0

) ¡ 1)2 = 0

) k = 1

3

(3k

page 168 should read:Worked Solutions EXERCISE ,C 4 a

6 c X » N(2:5, 2:5)

) P(X > 2) = P(X¤
> 2:5)

¼ 0:500

Y » N(130, 130)

) P(Y > 104) =

¼ 0:987

The approximation for X is poor, but that for Y is very good.

This is probably due to the fact that 2:5 = ¸ is not large

enough.

P(Y ¤
> 104:5)

page 169 should read:Worked Solutions EXERCISE ,C 6



page 178 should read:Worked Solutions EXERCISE ,E.2 and17 c 18 a iv

18 a i Let X = the number of people cured

then X » B(100, 3

4
).

ii ¹X = np

= 100£ 3

4

= 75

¾X =
p

np(1¡ p)

=
p

100£ 3

4
£ 1

4

¼ 4:3301

iii P(X 6 68) ¼ 0:0693

iv X » N(0:75,

3

4
£

1

4

100
) fCLTg

) P(X 6 0:68) ¼ 0:0530

) P

0
@X

)

) ¡0:6
p

)
p

)

2 b G (t)

G00(t)

Thus

and V

13 ¹X = 74

X » N

µ
74

page 177 should read:Worked Solutions EXERCISE ,E.2 13

,
n

P(X < 70:4) = 0:001 35

¡ 74
6p
n

<
70:4¡ 74

6p
n

1
A = 0:001 35

P

µ
Z <

¡3:6
p
n

6

¶
= 0:001 35

) P
¡
Z < ¡0:6

p
n
¢
= 0:001 35

n ¼ ¡2:999 98

n ¼ 5

n ¼ 25

Z

Area .= 0 00135

-0 6~`n.

page 172 should read:Worked Solutions EXERCISE ,D.3 2 b

0 = 1

6
+ 2

3
t+ 3

2
t2 and

= 2

3
+ 3t

E(X) = G0(1) = 1

6
+ 2

3
+ 3

2

) E(X) = 2 1

3

ar(X) = G00(1) +G0(1)¡ [G0(1)]2

= 3 2

3
+ 2 1

3
¡ (2 1

3
)2

= 5

9

and ¾X = 6

62
¶

17 c Let the contents of the three small cartons be S1

S3 and consider

V = E ¡ (S1 + S2 + S3)

E(V ) = E(E)¡ E(S1)¡ E(S2)¡ E(S3)

= 950¡ 315¡ 315¡ 315

= 5

Var(V ) = Var(E) + Var(S1) + Var(S2) + Var(S

= 25

10
+ 3( 4

15
)

= 3:3

) V » N(5, 3:3)

P(E < S1 + S2 + S3) = P(E ¡ (S1 + S2 + S

= P(V < 0)

¼ 0:002 96

, S2, and

3)

3) < 0)



d i n = 500, bp = 350

500
= 0:7 and p = 0:85

np = 425 and n(1¡ p) = 75 are both >

) n > 34

5

4 b For bp to be approximated by the normal distribution we

require that

1 a Claim is: p = 0:04 and n = 1000
As np = 40 and n(1 ¡ p) = 960 are both > 5 we can

assume that bp » N

³
0:04,

0:04£ 0:96

1000

´
P(bp > 0:07) ¼ 6:46£ 10¡7

np > 5 and n(1¡ p) > 5

) 0:85n > 5 and 0:15n > 5

) n > 5:88 and n > 33:33

page 178 should read:Worked Solutions EXERCISE ,E.3 1 a 4 b d, and

As we had to estimate ¾ from sn, the t-distribution applies.

a i 95% confidence interval is 80:3 < ¹ < 89:0

ii 99% confidence interval is 78:8 < ¹ < 90:4

b The 95% confidence interval for ¹ is

) 84:6¡ sn¡1p
n

t0:025 6 ¹ 6 84:6 +
sn¡1p

n

t0:025

) ¡2:001
sn¡1p

n

6 ¹¡ 84:6 6 2:001
sn¡1p

n

Thus 2:001£ 16:94
p
n

< 5

)
p
n >

2:001£ 16:94

5

) n > 45:97

) a sample of 46 or more is needed.

10
P

x = 112:5 and
P

x2 = 1325:31

a x =

P
x

n

= 112:5

10

= 11:25

b s 2
n =

P
x
2

n

¡ x2

= 1325:31

10
¡ 11:252

= 5:9685

sn¡1 =

r
n

n ¡ 1
sn

gives sn¡1 ¼ 2:575
and sn¡1 is an unbiased

estimate of ¾.

c As sn¡1 is used as an unbiased estimate of ¾2 the

9 n = 60, x = 84:6, sn = 16:8

sn¡1 =

r
n

n ¡ 1
sn =

p
60

59
£ 16:8

) sn¡1 ¼ 16:94 funbiased estimate of ¾g

page 182 should read:Worked Solutions EXERCISE G.1 ,9 10 cand

page 179 should read:Worked Solutions EXERCISE E.3 ,6 a

6 a n = 250 and their claim is p = 0:9
np = 250£ 0:9 = 225 and n(1¡ p) = 25 and these are

both > 5

t-distribution applies.

From technology, 9:76 6 ¹ 6 12:7



12 b As sn¡1 is used to estimate ¾, we use the t-distribution.

The 99% confidence interval for ¹ is

x¡ sn¡1p
n

t0:005 6 ¹ 6 x+
sn¡1p

n

t0:005

) ¡2:685
sn¡1p

n

6 ¹¡ x 6 2:685
sn¡1p

n

) we require
2:685£ 4:7497

p
n

< 1:8

)
p
n >

2:685£ 4:7497

1:8

) n > 50:2

) n should be at least 51.

page 183 should read:Worked Solutions EXERCISE G.1 12 b

page 185 and should read:Worked Solutions EXERCISE H.3 Questions 2 b i 4 (5)

T

-2 069. t®

2

= 2 069.
t¤ = -1 494.

2 b i

T

0 005.0 005.

-3 250. 3 250.

t¤

4 (5) or p-value

= 2£ P(T > jt¤j)
= 2£ P(T > 2:5)

¼ 0:033 86

page 186 should read:Worked Solutions EXERCISE H.4 Question 1 (4)

1 (4) We reject H0 if:

t¤ lies in the critical

region

or the p-value is < 0:05

(4)

or the p-value is < 0:05

3

or the p-value < 0:05

We reject H0 if:

t¤ lies in the critical

region

(4) We reject H0 if:

t¤ lies in the critical

region

page 187 should read:Worked Solutions EXERCISE H.4 Questions 2 3(4) and (4)

2

6 a ii P(5 or 6 sixes j X » B(6, 1

6
))

= P(X > 5 j X » B(6, 1

6
))

= 1¡ P(X 6 4 j X » B(6, 1

6
))

¼ 0:000 664

page 190 should read:Worked Solutions EXERCISE H.6 Question 6 a ii



b
P

xiyi = 16 + 20 + 24 + 28 + 24 + 30 + 36 + 32

+ 40 + 40

= 290P
x 2

i
= 4 + 4 + 4 + 4 + 9 + 9 + 9 + 16 + 16 + 25

= 4£ 4 + 3£ 9 + 2£ 16 + 25

= 100P
y 2

i
= 82 + 102 + 122 + 142 + 82 + 102 + 122 + 82

+ 102 + 82

= 4£ 82 + 3£ 102 + 2£ 122 + 142

= 1040

) r =
290¡ 10£ 3£ 10p

(100¡ 10£ 32)(1040¡ 10£ 102)

=
¡10p
10£ 40

= ¡10

20

=

Technology gives the values for x, y, n,
P

x 2

i
,
P

y 2

i
,P

xiyi, and r.

¡0:5

2

page 191 should read:Worked Solutions EXERCISE I.1 2 b

,

X » N(8, 6

32
)

) P(7:9 6 X 6 8:1) ¼ 0:183

page 193 and should read:Worked Solutions EXERCISE ,I.3 Questions 1 2 3

1

(4) At a 5% level, we do not accept H0. We accept that the data

is correlated.
At a 1% level, we accept H0 that the data is not correlated.

4 b X » B(1050, 0:75)

) we can approximate X by a normal variate with

¹ = np

= 787:5

and ¾ =
p

np(1¡ p)

= 14:03

Now np > 5 and n(1¡ p) > 5

page 195 should read:Worked Solutions REVIEW SET ,A 4 b

.....

2

3

(4) At both the 5% level and 1% level we do not accept H0. We

accept that the data is correlated.

(4) At a 5% level we do not accept H0. We accept that the data

is correlated.
At a 1% level we accept H0 that the data is not correlated.

.....

.....

1 d P(Y > 8b) = P(Y > 1:25)

¼ 0:106

page 200 should read:Worked Solutions REVIEW SET ,C 1 d

3 b ii As n > 30 we can use the Central Limit Theorem.

page 203 should read:Worked Solutions REVIEW SET ,D 3 b ii




